Supplement to:

Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2C19 and Proton Pump Inhibitor Dosing

John J. Lima1, Cameron D. Thomas2, Julia Barbarino3, Zeruesenay Desta4, Sara L. Van Driest5, Nihal El Rouby2,6, Julie A. Johnson2, Larisa H. Cavallari2, Valentina Shakhnovich7,8,9, David L. Thacker10,11, Stuart A. Scott12,13, Matthias Schwab14,15,16, Chakradhara Rao S Uppugunduri17,18, Christine M. Formea19, James P. Franciosi20,21, Katrin Sangkuhl3, Andrea Gaedigk7, Teri E. Klein3, Roseann S. Gammal22,23, Takahisa Furuta24

1 Center for Pharmacogenomics and Translational Research, Nemours Children’s Health, Jacksonville, FL, USA
2 Department of Pharmacotherapy and Translational Research, and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA
3 Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
4 Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA
5 Departments of Pediatrics and Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
6 Division of Pharmacy Practice & Administrative Sciences, University of Cincinnati James Winkle College of Pharmacy, Cincinnati, OH, USA
7 Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Kansas City and University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
8 Division of Gastroenterology, Hepatology, and Nutrition, Children’s Mercy Kansas City, Kansas City, MO, USA
9 Center for Children’s Healthy Lifestyles & Nutrition, Kansas City, MO, USA
10 Department of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA
11 Translational Software, Bellevue, WA, USA
12 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
13 Sema4, Stamford, CT, USA
14 Dr Margaret Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
15 Department of Clinical Pharmacology, University Hospital, Tuebingen, Germany
16 Department of Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
17 CANSEARCH Research Laboratory, Department of Paediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
18 Oncology-Hematology Unit, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospital, Geneva, Switzerland
19 Department of Pharmacy Services and Intermountain Precision Genomics, Intermountain Healthcare, Salt Lake City, UT, USA
20 Division of Gastroenterology, Hepatology and Nutrition, Nemours Children’s Hospital, Orlando, FL
21 Department of Pediatrics, University of Central Florida College of Medicine, Orlando, FL, USA
22 Department of Pharmacy Practice, MCPHS University School of Pharmacy, Boston, MA, USA
23 Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
24 Center for Clinical Research, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
TABLE OF CONTENTS

GUIDELINE UPDATES .. 4
LITERATURE REVIEW ... 4
GENETIC TEST INTERPRETATION .. 4
AVAILABLE GENETIC TEST OPTIONS .. 5
LEVELS OF EVIDENCE LINKING GENOTYPE TO PHENOTYPE ... 6
STRENGTH OF RECOMMENDATIONS ... 8
RESOURCES TO INCORPORATE PHARMACOGENETICS INTO AN ELECTRONIC HEALTH RECORD WITH CLINICAL DECISION SUPPORT ... 9
PEDIATRIC CONSIDERATIONS .. 12
TABLE S1. EVIDENCE LINKING CYP2C19 TO OMEPRAZOLE PHENOTYPE 14
TABLE S2. EVIDENCE LINKING CYP2C19 TO LANSOPRAZOLE PHENOTYPE 22
TABLE S3. EVIDENCE LINKING CYP2C19 TO PANTOPRAZOLE PHENOTYPE 27
TABLE S4. EVIDENCE LINKING CYP2C19 TO DEXLANSOPRAZOLE PHENOTYPE 30
TABLE S5. EVIDENCE LINKING CYP2C19 TO ESOMEPRAZOLE PHENOTYPE 31
TABLE S6. EVIDENCE LINKING CYP2C19 TO RABEPRAZOLE PHENOTYPE 33
TABLE S7. EVIDENCE LINKING CYP2C19 TO PROTON PUMP INHIBITOR PHENOTYPE (MIXED COHORT) ... 38
TABLE S8. DOSING RECOMMENDATIONS FOR ESOMEPRAZOLE AND RABEPRAZOLE BASED ON CYP2C19 PHENOTYPE ... 41
REFERENCES .. 42
GUIDELINE UPDATES

The Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C19 and proton pump inhibitor (PPI) dosing is published in full on the CPIC website (1). Relevant information will be reviewed periodically and updated guidelines published online.

LITERATURE REVIEW

The PubMed® database (1966 to April 2018) was searched for the following keywords: (CYP2C19 OR cytochrome P450 2C19) AND (proton pump inhibitor OR PPI OR *omeprazole OR *lansoprazole OR pantoprazole OR rabeprazole). The search was limited to studies conducted in humans and written in the English language, and review articles were excluded. Using these search terms, 831 publications were identified. Study inclusion criteria included publications that incorporated analyses for the association between CYP2C19 genotype and PPI pharmacokinetic parameters or PPI-related clinical outcomes. Following the application of these criteria, 244 publications were reviewed and included in the evidence tables (Tables S1-S7).

GENETIC TEST INTERPRETATION

The haplotype, or star (*) allele name, is determined by a specific single nucleotide polymorphism (SNP) or a combination of SNPs that are interrogated in the genotyping analysis. Numerous deletion and duplication events affecting the CYP2C gene locus have been described (see Botton et al for a comprehensive summary (2) and the PharmVar Structural Variation document at https://www.pharmvar.org/gene/CYP2C19). Many of the gene deletion and duplication events involve more than one of the CYP2C genes and can even encompass a large number of genes within this chromosomal region. To date, PharmVar has defined deletion events
encompassing the entire *CYP2C19* gene under the *CYP2C19**36 designation and those with partial *CYP2C19* gene deletion events (that include at least exon 1) as *CYP2C19**37 (2). *CYP2C* copy number variants appear to be rare and are typically not part of pharmacogenetic testing.

The genotypes that constitute the haplotype, or star (*) alleles for *CYP2C19*, and the rs# for each of the specific genomic nucleotide alterations that define the alleles, are described in the *CYP2C19 Allele Definition Table* online (1, 3). The genotype results are generally reported as a diplotype, which includes one maternal and one paternal star allele (e.g., *1/*2). The *CYP2C19* function associated with each of the common star alleles is summarized in the *CYP2C19 Allele Functionality Table* online (1, 3).

AVAILABLE GENETIC TEST OPTIONS

Commercially available genetic testing options change over time. The Genetic Testing Registry provides a central location for voluntary submission of genetic test information by providers and is available at http://www.ncbi.nlm.nih.gov/gtr. Desirable characteristics of pharmacogenetic tests, including naming of alleles and test report contents, have been extensively reviewed by an international group, including CPIC members (4). CPIC recommends that clinical laboratories adhere to these test reporting standards. CPIC gene-specific tables adhere to these allele nomenclature standards. Moreover, these tables (*CYP2C19 Allele Definition Table*, *CYP2C19 Allele Functionality Table*, and *CYP2C19 Allele Frequency Table*) may be used to assemble lists of known functional and actionable pharmacogenetic variants and their population frequencies, which may inform decisions as to whether tests are adequately comprehensive in interrogations of alleles (1, 3). Furthermore, the Association for Molecular Pathology has published a recommendation for the key attributes of alleles
recommended for clinical testing and a minimum set of variants that should be included in clinical genotyping assays for \textit{CYP2C19} (5).

LEVELS OF EVIDENCE LINKING GENOTYPE TO PHENOTYPE

The evidence summarized in \textit{Tables S1-S7} is graded on a scale of high, moderate, and weak (6) based upon the level of evidence:

\textbf{High:} Evidence includes consistent results from well-designed, well-conducted studies.

\textbf{Moderate:} Evidence is sufficient to determine effects, but the strength of the evidence is limited by the number, quality or consistency of the individual studies, generalizability to routine practice, or the indirect nature of the evidence.

\textbf{Weak:} Evidence is insufficient to assess the effects on health outcomes because of limited number or power of studies, important flaws in their design or conduct, gaps in the chain of evidence, or lack of information.

To determine these levels of evidence for major finding statements, individual studies are first evaluated using a structured framework:

1. Quality elements for individual studies are evaluated as yes, no, partially, unclear, or not relevant:

 - Confounders and use of concomitant medications with possible drug interactions are reported and potential impact on the major finding are analyzed and reported.
 - Phenotype assignments (when comparing phenotype groups) are based on CPIC phenotype assignment or similar.
 - Reported data are based on steady-state kinetics where appropriate.
• Sample size adequate to assess difference between genotype/phenotype groups, especially for negative findings.

• Adequate phenotyping or genotyping methods:
 o States all genetic variants screened
 o Alleles tested are adequate to determine “wild-type” genotype
 o Adequate phenotyping or genotyping method used
 o Appropriate attainment of samples
 o Defines how * alleles are defined, if applicable
 o Clearly states which genotypes were found in the study

• Race and/or ancestry is discussed and appropriately considered.

• Outcome definition clearly defined and measured.

• Appropriate statistics performed.

2. The individual study is rated with respect to how well it supports the major finding statement:

• First, it is determined whether the study supports the major finding statement or does not support it.

• Second, a qualifier is added to the statement (if needed) based on the quality elements listed above:

 o **Some study quality flaws:** Enough of the items in step 1 are rated “partially,” “unclear,” or “no” to introduce some uncertainty about the validity of the conclusions.
Major study quality flaws: Enough of the items in step 1 are rated “partially,” “unclear,” or “no” to introduce serious uncertainty about the validity of the conclusions.

No qualification on statement: If few items in step 1 are rated as “partially,” “unclear,” or “no.”

- There are six possible ratings for individual studies:
 - Supports the statement
 - Supports the statement but with some quality flaws
 - Supports the statement but with major quality flaws
 - Does not support the statement
 - Does not support the statement but with some quality flaws
 - Does not support the statement but with major quality flaws

STRENGTH OF RECOMMENDATIONS

CPIC’s therapeutic recommendations are based on weighing the evidence from a combination of preclinical functional and clinical data, as well as on some existing disease-specific consensus guidelines. Some of the factors that are taken into account in evaluating the evidence supporting therapeutic recommendations include in vivo pharmacokinetic and pharmacodynamic data, in vitro enzyme activity of tissues expressing wild-type/reference or variant-containing CYP2C19, in vitro CYP2C19 enzyme activity from tissues isolated from individuals of known CYP2C19 genotypes, and in vivo pre-clinical and clinical pharmacokinetic and pharmacodynamic studies.
Overall, the therapeutic recommendations are simplified to allow rapid interpretation by clinicians. CPIC uses a slight modification of a transparent and simple system for recommendations adopted from the rating scale for evidence-based guidelines on the use of antiretroviral agents (7):

- **Strong** recommendation for the statement: The evidence is high quality and the desirable effects clearly outweigh the undesirable effects.
- **Moderate** recommendation for the statement: There is a close or uncertain balance as to whether the evidence is high quality and the desirable effects clearly outweigh the undesirable effects.
- **Optional** recommendation for the statement: The desirable effects are closely balanced with undesirable effects, or the evidence is weak or based on extrapolations. There is room for differences in opinion as to the need for the recommended course of action.
- **No recommendation**: There is insufficient evidence, confidence, or agreement to provide a recommendation to guide clinical practice at this time.

RESOURCES TO INCORPORATE PHARMACOGENETICS INTO AN ELECTRONIC HEALTH RECORD WITH CLINICAL DECISION SUPPORT

Clinical decision support (CDS) tools integrated within electronic health records (EHRs) can help guide clinical pharmacogenetics at the point of care (8-13). See https://cpicpgx.org/guidelines/cpic-guideline-for-proton-pump-inhibitors-and-cyp2c19/ for resources to support the adoption of CPIC guidelines within an EHR (1, 14). Based on the capabilities of various EHRs and local preferences, we recognize that approaches may vary across organizations. Our intent is to synthesize foundational knowledge that provides a common
starting point for incorporating CYP2C19 genotype results in an EHR to guide proton pump inhibitor dosing.

Effective incorporation of pharmacogenetic information into an EHR to optimize drug therapy should have some key attributes. Pharmacogenetic results, an interpreted phenotype, and a concise interpretation or summary of the result must be documented in the EHR (15). To incorporate a phenotype in the EHR in a standardized manner, genotype test results provided by the laboratory must be consistently translated into an interpreted phenotype (Table 1, main manuscript; CYP2C19 Diplotype to Phenotype Table (1, 3)). Because clinicians must be able to easily find the information, the interpreted phenotype may be documented as a problem list entry or in a patient’s summary section; these phenotypes are best stored in the EHR at the “person level” rather than at the date-centric “encounter level”. Additionally, results should be entered as standardized and discrete terms to facilitate using them to provide point-of-care CDS (see PPI Pre- and Post-Test Alerts and Flow Chart for example CDS alerts; https://cpicpgx.org/guidelines/cpic-guideline-for-proton-pump-inhibitors-and-cyp2c19/) (16, 17).

Because pharmacogenetic results have lifetime implications and clinical significance, results should be placed into a section of the EHR that is accessible independent of the test result date to allow clinicians to quickly find the result at any time after it is initially placed in the EHR. To facilitate this process, CPIC is providing gene-specific information figures and tables that include complete diplotype to phenotype translation tables, diagram(s) that illustrate how CYP2C19 pharmacogenetic test results could be entered into an EHR, example EHR consultation/genetic test interpretation language and widely used nomenclature systems (see https://cpicpgx.org/guidelines/cpic-guideline-for-proton-pump-inhibitors-and-cyp2c19) (1, 18).
Point-of-care CDS should be designed to effectively notify clinicians of prescribing implications at any time after the test result is entered into the EHR. CPIC is also providing gene-drug specific tables that provide guidance to achieve these objectives with diagrams that illustrate how point-of-care CDS should be entered into the EHR, example pre- and post-test alert language, and widely used nomenclature systems for relevant drugs (see https://cpicpgx.org/guidelines/cpic-guideline-for-proton-pump-inhibitors-and-cyp2c19 (1)).

There are some unique implementation challenges associated with CYP2C19/PPIs given the indication-specific recommendations (increased dose for *H. pylori* infection and erosive esophagitis) for CYP2C19 RMs and NMs and time-dependent recommendations (short-term vs long-term use >12 weeks) for CYP2C19 IMs, CYP2C19 likely IMs, CYP2C19 PMs, and CYP2C19 likely PMs. CDS post-test alert language is provided for all CYP2C19 phenotypes; however, the possibility of alert fatigue must be considered given the frequency with which PPIs are prescribed. Considering that for most initial PPI prescriptions the recommendation will be to initiate standard dosing, pre-test alerts are not recommended to fire for all PPI orders. Given these challenges, implementation will ultimately be institution-specific and may require creative solutions. Alternative CDS solutions include incorporating an option to order CYP2C19 genotype into disease-specific order sets (e.g., for *H. pylori* infection and/or erosive esophagitis); custom-built order sets that include PPIs for specific indications (e.g., *H. pylori* infection and/or erosive esophagitis) that account for known CYP2C19 results; limit pre-test and/or post-test alerts to providers within a specific specialty area (e.g., gastrointestinal specialists); and include pre-test and/or post-test alerts when all the required elements for a specific indication are present (e.g., alert will fire only when all medications for the treatment of *H. pylori* are added to the
patient’s active medication list or *H. pylori* infection and/or erosive esophagitis are in the patient’s problem list). See the pre- and post-test alert tables for examples of CDS alerts (1).

PEDIATRIC CONSIDERATIONS

PPIs are some of the most commonly prescribed drugs for pediatric populations, and prescription rates continue to rise (19-21). PPIs are available over-the-counter (without prescriptions) in some countries. In children younger than 18 years of age, PPIs currently have U.S. Food and Drug Administration (FDA)-approved indications for the short-term treatment of symptomatic gastroesophageal reflux disease (GERD), healing of erosive esophagitis, treatment of peptic ulcer disease, and for eradication of *H. pylori* as part of a multi-drug regimen (22-24). Despite current lack of FDA approval for the indication of eosinophilic esophagitis, PPI therapy is now considered standard of care for this condition in North America and Europe (25). Off-label use of long-term PPI therapy in children is common, and there are increasing concerns that PPIs are over-utilized in pediatric populations (26, 27). Esomeprazole has been FDA-approved for infants as young as one month of age only for confirmed erosive esophagitis, yet many PPIs are frequently prescribed incorrectly for symptoms suspected to be secondary to GERD without proven benefit. PPI therapy has been studied in children with respiratory symptoms, sleep disorders, and excessive crying, with minimal benefit demonstrated (28-30).

There are emerging concerns that PPI therapy use (and/or misuse) is associated with numerous side effects including, but not limited to, gastrointestinal and respiratory infections, malabsorption of vitamins and minerals, bone fracture, and possible association to chronic diseases such as celiac disease and chronic kidney disease (31-36). PPI therapy did not show
benefit in children with asthma in terms of lung function but did demonstrate increased rates of respiratory infections (37), highlighting this specific side effect.

CYP2C19 enzyme function is reported to be very low during early fetal life, consistent with very low apparent clearance of PPIs in preterm neonates and term infants less than 2-3 months of age, but clearance is consistent with adult values after that age (38-40). There is emerging evidence for the influence of CYP2C19 function on PPI pharmacokinetics and response in children (41-46). CYP2C19 RM or UM phenotypes have been associated with decreased therapeutic efficacy compared to PM and NM phenotypes when treating children with GERD and eosinophilic esophagitis (47-50). The CYP2C19 PM phenotype has been associated with higher rates of pediatric respiratory and gastrointestinal infections than NM, RM, or UM phenotypes (51). There is one report of increased infection events in infants and young children treated with PPIs who are CYP2C19 NMs versus UMs (52). A recent pilot study of CYP2C19 genotype-guided dosing of PPI medications in children has been promising, and additional studies are ongoing (53, 54). These data support optimization of PPIs therapy in infants and children over one year of age based on CYP2C19 genotype data, with weaker evidence to support genotype-guided dosing in pre-term infants or infants less than 2-3 months of age (55).
TABLE S1. EVIDENCE LINKING *CYP2C19* TO OMEPRAZOLE PHENOTYPE

<table>
<thead>
<tr>
<th>Type of experimental model</th>
<th>Major findings</th>
<th>References</th>
<th>Level of evidence<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are associated with decreased metabolism of omeprazole as compared to IMs.</td>
<td>Ieiri, et al. 1996 (56)</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Herrlin, et al. 1998 (57)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Furuta, et al. 1999 (58)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Furuta, et al. 1999 (59)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sakai, et al. 2001 (60)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shirai, et al. 2001 (61)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>He, et al. 2003 (62)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yin, et al. 2004 (63)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rosemary, et al. 2005 (64)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ohnishi, et al. 2005 (65)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Qiao, et al. 2006 (66)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shimizu, et al. 2006 (67)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uno, et al. 2007 (68)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wang, et al. 2007 (69)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hu, et al. 2007 (70)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wang, et al. 2010 (71)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shiohira, et al. 2011 (72)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shiohira, et al. 2012 (73)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yamada, et al. 2013 (74)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Payan, et al. 2014 (75)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Park, et al. 2017 (76)</td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs (as determined by phenotyping) are associated with decreased metabolism of omeprazole as compared to IMs.</td>
<td>Chang, et al. 1995 (77)</td>
<td>High</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are associated with decreased metabolism of omeprazole as compared to NMs.</td>
<td>Rost and Roots 1996 (78)</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ieiri, et al. 1996 (56)</td>
<td></td>
</tr>
</tbody>
</table>
| Clinical | CYP2C19 PMs (as determined by phenotyping) are associated with decreased metabolism of omeprazole as compared to NMs. | Furuta, et al. 1999 (58)
Furuta, et al. 1999 (59)
Zhou, et al. 1999 (79)
Sakai, et al. 2001 (60)
Shirai, et al. 2001 (61)
Kita, et al. 2002 (80)
He, et al. 2003 (62)
Yin, et al. 2004 (63)
Rosemary, et al. 2005 (64)
Ohnishi, et al. 2005 (65)
Ieiri, et al. 2005 (81)
Qiao, et al. 2006 (66)
Shimizu, et al. 2006 (67)
Uno, et al. 2007 (68)
Wang, et al. 2007 (69)
Niioka, et al. 2007 (82)
Hu, et al. 2007 (70)
Uno, et al. 2008 (83)
Chen, et al. 2009 (84)
Chaudhry, et al. 2009 (85)
Wang, et al. 2010 (71)
Shiohira, et al. 2011 (72)
Shiohira, et al. 2012 (73)
Yamada, et al. 2013 (74)
Payan, et al. 2014 (75)
Park, et al. 2017 (76)
Rost, et al. 1992 (86)
Yasuda, et al. 1995 (87)
Tybring, et al. 1997 (88)
Bottiger, et al. 1997 (89)
Andersson, et al. 1998 (90)
Mihara, et al. 1999 (91)
Tassaneeyakul, et al. 2000 (92) | High |
<table>
<thead>
<tr>
<th>Clinical</th>
<th>CYP2C19 PMs are associated with decreased metabolism of omeprazole as compared to RMs.</th>
<th>Payan, et al. 2014 (75)</th>
<th>Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are associated with decreased metabolism of omeprazole as compared to UMs.</td>
<td>Payan, et al. 2014 (75)</td>
<td>Moderate</td>
</tr>
</tbody>
</table>
| Clinical | CYP2C19 IMs are associated with decreased metabolism of omeprazole as compared to NMs. | Chang, et al. 1995 (93)
Marinac, et al. 1996 (94)
Herrlin, et al. 1998 (57)
Furuta, et al. 1999 (59)
Furuta, et al. 1999 (58)
Shu, et al. 2000 (95)
Sakai, et al. 2001 (60)
Kim, et al. 2002 (96)
He, et al. 2003 (62)
Kearns, et al. 2003 (97)
Yin, et al. 2004 (63)
Rosemary, et al. 2005 (64)
Shimizu, et al. 2006 (67)
Uno, et al. 2007 (68)
Wang, et al. 2007 (69)
Niioka, et al. 2007 (82)
Hunfeld, et al. 2008 (98)
Yamada, et al. 2013 (74)
Roman, et al. 2014 (99)
Payan, et al. 2014 (75) | Moderate |
| Clinical | CYP2C19 IMs (as determined by phenotyping) are associated with decreased metabolism of omeprazole as compared to NMs. | Chang, et al.1995 (77) | Moderate |
| Clinical | CYP2C19 IMs are associated with decreased metabolism of omeprazole as compared to RMs. | Roman, et al. 2014 (99)
Payan, et al.2014 (75) | Moderate |
| Clinical | CYP2C19 IMs are associated with decreased metabolism of omeprazole as compared to UMs. | Payan, et al. 2014 (75) | Moderate |
| Clinical | CYP2C19 NMs are associated with decreased metabolism of omeprazole as compared to RMs. | Sim, et al. 2006 (100)
Hunfeld, et al. 2008 (98)
Roman, et al. 2014 (99) | Weak |
<table>
<thead>
<tr>
<th>Clinical</th>
<th>CYP2C19 NMs are associated with decreased metabolism of omeprazole as compared to UMs.</th>
<th>Payan, et al. 2014 (75)</th>
<th>Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>CYP2C19 RMIs are associated with decreased metabolism of omeprazole as compared to UMs.</td>
<td>Payan, et al. 2014 (75)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs have decreased metabolism of omeprazole as compared to NMIs+RMIs+UMIs.</td>
<td>Zhao, et al. 2018 (46)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs+IMs are not associated with altered metabolism of omeprazole as compared to NMIs.</td>
<td>Denisenko, et al. 2017 (106)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs+IMs are not associated with altered metabolism of omeprazole as compared to UMIs.</td>
<td>Denisenko, et al. 2017 (106)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 IMs have decreased metabolism of omeprazole as compared to NMIs+RMIs+UMIs.</td>
<td>Zhao, et al. 2018 (46)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 NMIs are associated with decreased metabolism of omeprazole as compared to RMIs+UMIs.</td>
<td>Denisenko, et al. 2017 (106)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 is related to omeprazole metabolism when comparing PMs vs IMs vs NMIs vs RMIs.</td>
<td>Koukoula, et al. 2017 (111)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 is associated with omeprazole metabolism when comparing PMs vs IMs vs NMIs vs RMIs+UMIs.</td>
<td>Xavier, et al. 2016 (112)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>Clinical CYP2C19 is not associated with omeprazole metabolism when comparing PMs vs IMs vs NMs vs RM vs UMs.</td>
<td>Kearns, et al. 2010 (113)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>Clinical CYP2C19 is not associated with omeprazole metabolism when comparing IMs vs NMs vs RM.</td>
<td>Chwiesko, et al. 2016 (114)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>Clinical CYP2C19 is not associated with omeprazole metabolism when comparing IMs vs NMs vs RM+UMs.</td>
<td>Chwiesko, et al. 2016 (114)</td>
<td>Weak</td>
</tr>
<tr>
<td>In vitro</td>
<td>In vitro CYP2C198 is associated with decreased metabolism of omeprazole as compared to CYP2C191.</td>
<td>Wang, et al. 2011 (117)</td>
<td>Weak</td>
</tr>
<tr>
<td>In vitro</td>
<td>In vitro CYP2C19*14 and 32 (H99R) are not associated with altered metabolism of omeprazole as compared to CYP2C191.</td>
<td>Wang, et al. 2011 (117)</td>
<td>Weak</td>
</tr>
<tr>
<td>In vitro</td>
<td>In vitro CYP2C19*23, *29 (K28I), *30, *31 (H78Y) and 33 (D188N) are associated with decreased metabolism of omeprazole as compared to CYP2C191.</td>
<td>Dai, et al. 2015 (119)</td>
<td>Weak</td>
</tr>
<tr>
<td>In vitro</td>
<td>In vitro CYP2C19*2B (E92D), *2C (A161P), *2E (M271I), *2F (D341N), *2G (D360V), *2H (H396D), *2J (K421Q), *3B (D360N) and 3C (M136K) are associated with decreased metabolism of omeprazole as compared to CYP2C191.</td>
<td>Wang, et al. 2011 (117)</td>
<td>Weak</td>
</tr>
</tbody>
</table>

Efficacy

Remission or Healing

<p>| Clinical | Clinical CYP2C19 IMs are associated with increased remission of reflux when treated with omeprazole as compared to NMs. | Zendehdel, et al. 2010 (121) | Weak |
| Clinical | Clinical CYP2C19 IMs are associated with increased healing rate of ulcers when treated with omeprazole as compared to NMs. | Ando, et al. 2005 (122) | Weak |
| Clinical | Clinical CYP2C19 IMs are associated with increased healing rate of ulcers when treated with omeprazole as compared to NMs. | Ando, et al. 2008 (123) | Weak |</p>
<table>
<thead>
<tr>
<th>Clinical</th>
<th>CYP2C19 NMs have a decreased healing rate of ulcers when treated with omeprazole.</th>
<th>Hizawa, et al. 2006 (124)</th>
<th>Weak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>CYP2C19 IMs have a decreased healing rate of ulcers when treated with omeprazole compared to CYP2C19 NMs.</td>
<td>Okamura, et al. 2013 (125)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 RMIs have a decreased healing rate of reflux when treated with omeprazole compared to CYP2C19 IMs.</td>
<td>Fukaya, et al. 2016 (126)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are not associated with healing rate of ulcers when treated with omeprazole compared to IMs+NMs.</td>
<td>Ji, et al. 2006 (127)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 is not associated with healing rate of reflux when treated with omeprazole when comparing PMs vs IMs vs NMs.</td>
<td>Ohkusa, et al. 2005 (128)</td>
<td>Weak</td>
</tr>
</tbody>
</table>

H. pylori eradication

<table>
<thead>
<tr>
<th>Clinical</th>
<th>CYP2C19 PMs are associated with an increased H. pylori eradication rate when treated with omeprazole as compared to IMs.</th>
<th>Furuta, et al. 1998 (129) Lin, et al. 2017 (130)</th>
<th>Weak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are associated with an increased H. pylori eradication rate when treated with omeprazole as compared to NMs.</td>
<td>Furuta, et al. 1998 (129) Chaudhry, et al. 2009 (85) Lin, et al. 2017 (130)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are associated with increased H. pylori eradication rate when treated with omeprazole as compared to IMs+NMs.</td>
<td>Tanigawara, et al.1999 (134) Miwa, et al. 2001 (135) Yang, et al. 2011 (136)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs+IMs are associated with increased H. pylori eradication rate when treated with omeprazole as compared to NMs.</td>
<td>Sheu, et al. 2005 (137) Hong, et al. 2016 (138)</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Acid secretion indices
CYP2C19 PMs are associated with better acid secretion indices when treated with omeprazole as compared to IMs.

Furuta, et al. 1999 (58)
Shirai, et al. 2001 (61)
Shimatani, et al. 2003 (144)
Hu, et al. 2007 (70)
Wang, et al. 2010 (71)
Sahara, et al. 2013 (145)
Sugimoto, et al. 2014 (146)
Park, et al. 2017 (76)

Moderate

CYP2C19 PMs are associated with better acid secretion indices when treated with omeprazole as compared to NMs.

Furuta, et al. 1999 (58)
Shirai, et al. 2001 (61)
Shimatani, et al. 2003 (144)
Sugimoto, et al. 2006 (147)
Hu, et al. 2007 (70)
Wang, et al. 2010 (71)
Furuta, et al. 2010 (148)
Sahara, et al. 2013 (145)
Sugimoto, et al. 2014 (146)
Park, et al. 2017 (76)

Moderate

CYP2C19 IMs are associated with better acid secretion indices when treated with omeprazole as compared to NMs.

Furuta, et al. 1999 (58)
Adachi, et al. 2000 (149)
Sagar, et al. 2000 (150)
Sagar, et al. 2000 (151)
Sagar, et al. 2000 (150)
Shirai, et al. 2001 (61)
Sugimoto, et al. 2006 (147)
Hu, et al. 2007 (70)
Hunfeld, et al. 2008 (98)
Sahara, et al. 2013 (145)
Sugimoto, et al. 2014 (146)

Moderate

CYP2C19 NMs are not associated with altered acid secretion indices when treated with omeprazole as compared to RMs.

Hunfeld, et al.2008 (98)
Chwiesko, et al. 2016 (114)

Weak

CYP2C19 PMs have better acid secretion indices when treated with omeprazole as compared to IMs+NMs.

Yang, et al. 2011 (136)

Weak
<table>
<thead>
<tr>
<th>Clinical</th>
<th>CYP2C19 NM are not associated with altered acid secretion indices when treated with omeprazole as compared to RMs+UMs.</th>
<th>Chwiesko, et al. 2016 (114)</th>
<th>Weak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>CYP2C19 is associated with acid secretion indices when treated with omeprazole when comparing PMs vs IMs vs NMs.</td>
<td>Furuta, et al. 1999 (58) Roh, et al. 2004 (109)</td>
<td>Weak</td>
</tr>
<tr>
<td>Toxicity</td>
<td>CYP2C19 PM are not associated with risk for adverse events when treated with omeprazole as compared to IMs.</td>
<td>Ohkusa, et al. 2005 (128)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PM are not associated with risk for adverse events when treated with omeprazole as compared to NMs.</td>
<td>Ohkusa, et al. 2005 (128)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PM do not have an altered risk for acute interstitial nephritis when treated with omeprazole as compared to NMs.</td>
<td>Helsby, et al. 2010 (152)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 UM have an increased risk for agranulocytosis when treated with omeprazole.</td>
<td>Dury, et al. 2012 (153)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 is not associated with risk for visual disorders when treated with omeprazole when comparing PMs vs IMs vs NMs.</td>
<td>Lutz, et al. 2002 (154)</td>
<td>Weak</td>
</tr>
</tbody>
</table>

aRating scheme described in the Supplemental Material

IM, intermediate metabolizer; NM, normal metabolizer; PM, poor metabolizer; RM, rapid metabolizer; UM, ultrarapid metabolizer
<table>
<thead>
<tr>
<th>Type of experimental model</th>
<th>Major findings</th>
<th>References</th>
<th>Level of evidence</th>
</tr>
</thead>
</table>
| Metabolism | CYP2C19 PMs are associated with decreased metabolism of lansoprazole as compared to IMs. | Sakai, et al. 2001 (60)
Ieiri, et al. 2001 (155)
Furuta, et al. 2001 (156)
Shirai, et al. 2002 (157)
Furuta, et al. 2002 (158)
Schwab, et al. 2004 (159)
Miura, et al. 2004 (160)
Uno, et al. 2005 (161)
Saito, et al. 2005 (162)
Uno, et al. 2005 (163)
Qiao, et al. 2006 (66)
Xu, et al. 2010 (164)
Zhang, et al. 2011 (165)
Gumus, et al. 2012 (166)
Li, et al. 2014 (167) | High |
| Clinical | CYP2C19 PMs are associated with decreased metabolism of lansoprazole as compared to NMs. | Ko, et al. 1999 (168)
Sakai, et al. 2001 (60)
Ieiri, et al. 2001 (155)
Furuta, et al. 2001 (156)
Shirai, et al. 2002 (157)
Kim, et al. 2002 (169)
Furuta, et al. 2002 (158)
Hu, et al. 2004 (170)
Schwab, et al. 2004 (159)
Miura, et al. 2004 (160)
Uno, et al. 2005 (161)
Saito, et al. 2005 (162) | High |
| Clinical | CYP2C19 IMs are associated with decreased metabolism of lansoprazole as compared to NMs. | Sohn, et al. 1997 (173) Andersson, et al. 1998 (90) | Moderate |
| Clinical | CYP2C19 NMs are not associated with altered metabolism of lansoprazole as compared to RMs. | Gumus, et al. 2012 (166) | Weak |
| Clinical | CYP2C19 NMs are associated with decreased metabolism of lansoprazole as compared to UMs. | Gumus, et al. 2012 (166) | Weak |
Clinical

CYP2C19 PMs+IMs are associated with decreased metabolism of lansoprazole as compared to NMs.	Zhang, et al. 2013 (181)
—	—
CYP2C19 is associated with lansoprazole metabolism when comparing PMs vs IMs vs NMs.	Lima, et al. 2013 (51) Weak

Efficacy

Remission or Healing

CYP2C19 PMs are associated with increased remission of reflux when treated with lansoprazole as compared to IMs.	Kawamura, et al. 2007 (185) Moderate
—	—
CYP2C19 PMs are associated with increased remission and healing rate of reflux when treated with lansoprazole as compared to NMs.	Furuta, et al. 2002 (158) High
CYP2C19 PMs are not associated with altered healing rate of ulcers when treated with lansoprazole as compared to NMs.	Yoshizawa, et al. 2016 (187) Weak
CYP2C19 IMs are associated with increased remission and healing rate of reflux when treated with lansoprazole as compared to NMs.	Furuta, et al. 2002 (158) High
CYP2C19 IMs are not associated with healing rate of ulcers when treated with lansoprazole as compared to NMs.	Yoshizawa, et al. 2016 (187) Weak
CYP2C19 IMs have a decreased healing rate of ulcers when treated with lansoprazole.	Okamura, et al. 2013 (125) Weak

H. pylori eradication

| CYP2C19 PMs are not associated with altered H. pylori eradication rate when treated with lansoprazole as compared to IMs. | Okudaira, et al. 2005 (189) Weak |
|—|—|
CYP2C19 PMs are associated with increased H. pylori eradication rate when treated with lansoprazole as compared to NMs.	Isomoto, et al. 2003 (190) Moderate		
Clinical	CYP2C19 PMs are associated with increased *H. pylori* eradication rate when treated with lansoprazole as compared to IMs+NMs.	Schwab, *et al.* 2004 (159)	Weak
Clinical	CYP2C19 PMs+IMs are associated with increased *H. pylori* eradication rate when treated with lansoprazole as compared to NMs.	Kawabata, *et al.* 2003 (196) Liou, *et al.* 2016 (197) Liou, *et al.* 2016 (197) Liou, *et al.* 2016 (198)	High

Acid secretion indices

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Description</td>
<td>Rating</td>
<td>References</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 IMs are associated with better acid secretion indices when treated with lansoprazole as compared to NMs.</td>
<td>High</td>
<td>Nishino, et al. 2011 (204) Sahara, et al. 2013 (145) Sugimoto, et al. 2014 (146)</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs+IMs are associated with decreased asthma control when treated with lansoprazole as compared to NMs.</td>
<td>Weak</td>
<td>Lang, et al. 2015 (206)</td>
</tr>
<tr>
<td>Toxicity</td>
<td>CYP2C19 PMs+IMs have an increased risk for upper respiratory infection or sore throat when treated with lansoprazole as compared to NMs.</td>
<td>Weak</td>
<td>Lima, et al. 2013 (51)</td>
</tr>
</tbody>
</table>

Rating scheme described in the Supplemental Material
IM, intermediate metabolizer; NM, normal metabolizer; PM, poor metabolizer; RM, rapid metabolizer; UM, ultrarapid metabolizer
<table>
<thead>
<tr>
<th>Type of experimental model</th>
<th>Major findings</th>
<th>References</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CYP2C19 PMs (as determined by phenotyping) have decreased metabolism of pantoprazole as compared to NMs.</td>
<td>Andersson, et al. 1998 (90)</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>CYP2C19 IMs are associated with decreased metabolism of pantoprazole as compared to RM.</td>
<td>Roman, et al. 2014 (99)</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>CYP2C19 IMs are associated with decreased metabolism of pantoprazole as compared to UM.</td>
<td>Roman, et al. 2014 (99)</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>CYP2C19 NMs are not associated with altered metabolism of pantoprazole as compared to RM.</td>
<td>Hunfeld, et al. 2008 (98) Roman, et al. 2014 (99)</td>
<td>Weak</td>
</tr>
<tr>
<td></td>
<td>CYP2C19 NMs are associated with decreased metabolism of pantoprazole as compared to UM.</td>
<td>Gawronska-Szklarz, et al. 2012 (215)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are associated with decreased metabolism of pantoprazole as compared to IMs+NMs.</td>
<td>Roman, et al. 2014 (99)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are associated with decreased metabolism of pantoprazole as compared to NMs+RMs.</td>
<td>Tanaka, et al. 1997 (216) Tanaka, et al. 2001 (217) Moderate</td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs+IMs+NMs are associated with decreased metabolism of pantoprazole as compared to RMs+UMs.</td>
<td>Karaca, et al. 2017 (219) Moderate</td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs+IMs are associated with decreased metabolism of pantoprazole as compared to NMs+RMs.</td>
<td>Kearns, et al. 2010 (113) Weak</td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 is associated with metabolism of pantoprazole when comparing IMs vs NMs vs RMs vs UMs.</td>
<td>Gawronska-Szklarz, et al. 2010 (220) Weak</td>
<td></td>
</tr>
</tbody>
</table>

Efficacy

| Clinical | CYP2C19 PMs+IMs are associated with increased healing rate of reflux when treated with pantoprazole as compared to NMs. | Sheu, et al. 2012 (221) High |
| Clinical | *CYP2C19* is associated with remission of reflux when treated with pantoprazole when comparing PMs vs IMs vs NMs. | Chen, et al. 2010 (222) Moderate |

H. pylori eradication

Clinical	CYP2C19 PMs are not associated with altered *H. pylori* eradication rate when treated with pantoprazole as compared to IMs.	Oh, et al. 2009 (223) Weak
Clinical	CYP2C19 PMs are not associated with altered *H. pylori* eradication rate when treated with pantoprazole as compared to NMs.	Oh, et al. 2009 (223) Weak
Clinical	CYP2C19 NMs are not associated with altered *H. pylori* eradication rate when treated with pantoprazole as compared to RMs.	Kurzawski, et al. 2006 (224) Weak
Clinical	CYP2C19 NMs are not associated with altered *H. pylori* eradication rate when treated with pantoprazole as compared to UMs.	Kurzawski, et al. 2006 (224) Weak
Clinical

<table>
<thead>
<tr>
<th>Study</th>
<th>Finding</th>
<th>Rating</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kang, et al. 2008 (225)</td>
<td>Clinical CYP2C19 PMs are not associated with altered H. pylori eradication rate when treated with pantoprazole as compared to IMs+NM.</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>Lee, et al. 2014 (226)</td>
<td>Clinical CYP2C19 PMs+IMs are associated with increased H. pylori eradication rate when treated with pantoprazole as compared to NM.</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Kurzawski, et al. 2006 (224)</td>
<td>Clinical CYP2C19 PMs+IMs are not associated with altered H. pylori eradication rate when treated with pantoprazole as compared to NM.</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>Ormeci, et al. 2016 (227)</td>
<td>Clinical CYP2C19 PMs+IMs are not associated with altered H. pylori eradication rate when treated with pantoprazole as compared to NM+RM+UM.</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>Gawronska-Szklarz, et al. 2010 (220)</td>
<td>Clinical CYP2C19 is not associated with H. pylori eradication rate when treated with pantoprazole when comparing PMs vs IMs vs NM.</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Hsu, et al. 2015 (228)</td>
<td>Clinical CYP2C19 is not associated with H. pylori eradication rate when treated with pantoprazole when comparing PMs+IMs vs NM vs RM+UM.</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>Karaca, et al. 2017 (219)</td>
<td>Clinical CYP2C19 is not associated with H. pylori eradication rate when treated with pantoprazole when comparing PMs vs IMs vs NM.</td>
<td>Weak</td>
<td></td>
</tr>
</tbody>
</table>

Acid secretion indices

<table>
<thead>
<tr>
<th>Study</th>
<th>Finding</th>
<th>Rating</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oh, et al. 2007 (229)</td>
<td>Clinical CYP2C19 PMs are associated with better acid secretion indices when treated with pantoprazole as compared to IMs.</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>Oh, et al. 2007 (229)</td>
<td>Clinical CYP2C19 PMs are associated with better acid secretion indices when treated with pantoprazole as compared to NM.</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>Oh, et al. 2007 (229)</td>
<td>Clinical CYP2C19 IMs are associated with better acid secretion indices when treated with pantoprazole as compared to NM.</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Hunfeld, et al. 2010 (214)</td>
<td>Clinical CYP2C19 NM are not associated with altered acid secretion indices when treated with pantoprazole as compared to RM.</td>
<td>Weak</td>
<td></td>
</tr>
</tbody>
</table>

Other

<table>
<thead>
<tr>
<th>Study</th>
<th>Finding</th>
<th>Rating</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheu, et al. 2012 (221)</td>
<td>Clinical CYP2C19 PMs are associated with a decreased number of required pantoprazole tablets in patients with reflux in remission as compared to IMs+NM.</td>
<td>Moderate</td>
<td></td>
</tr>
</tbody>
</table>

*Rating scheme described in the Supplemental Material
IM, intermediate metabolizer; NM, normal metabolizer; PM, poor metabolizer; RM, rapid metabolizer; UM, ultrarapid metabolizer
<table>
<thead>
<tr>
<th>Type of experimental model</th>
<th>Major findings</th>
<th>References</th>
<th>Level of evidence<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are associated with decreased metabolism of dexlansoprazole as compared to IMs.</td>
<td>Sun, et al. 2017 (230)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are associated with decreased metabolism of dexlansoprazole as compared to NMs.</td>
<td>Sun, et al. 2017 (230)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 IMs are associated with decreased metabolism of dexlansoprazole as compared to NMs.</td>
<td>Sun, et al. 2017 (230)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs have decreased metabolism of dexlansoprazole as compared to IMs+NMs.</td>
<td>Grabowski and Lee, et al. 2012 (231)</td>
<td>Weak</td>
</tr>
<tr>
<td>Efficacy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are not associated with altered acid secretion indices when treated with dexlansoprazole as compared to IMs.</td>
<td>Sun, et al. 2017 (230)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are associated with better acid secretion indices when treated with dexlansoprazole as compared to NMs.</td>
<td>Sun, et al. 2017 (230)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 IMs are not associated with altered acid secretion indices when treated with dexlansoprazole as compared to NMs.</td>
<td>Sun, et al. 2017 (230)</td>
<td>Weak</td>
</tr>
</tbody>
</table>

^aRating scheme described in the **Supplemental Material**
IM, intermediate metabolizer; NM, normal metabolizer; PM, poor metabolizer; RM, rapid metabolizer; UM, ultrarapid metabolizer
TABLE S5. EVIDENCE LINKING \textit{CYP2C19} TO ESOMEPRAZOLE PHENOTYPE

<table>
<thead>
<tr>
<th>Type of experimental model</th>
<th>Major findings</th>
<th>References</th>
<th>Level of evidencea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are associated with decreased metabolism of esomeprazole as compared to IMs.</td>
<td>Lou, et al. 2009 (232)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are associated with decreased metabolism of esomeprazole as compared to NMs.</td>
<td>Lou, et al. 2009 (232)</td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 IMs are associated with decreased metabolism of esomeprazole as compared to NMs.</td>
<td>Liu, et al. 2009 (232)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 IMs are associated with decreased metabolism of esomeprazole as compared to NMs.</td>
<td>Liu, et al. 2009 (232)</td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>\textit{CYP2C19} is associated with metabolism of esomeprazole when comparing PMs vs IMs vs NMs.</td>
<td>Yi, et al. 2017 (234)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Efficacy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remission or Healing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>\textit{CYP2C19} is associated with remission of reflux when treated with esomeprazole when comparing PMs vs IMs vs NMs.</td>
<td>Sheu, et al. 2008 (235)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>\textit{CYP2C19} is not associated with healing rate of reflux when treated with esomeprazole when comparing PMs vs IMs vs NMs.</td>
<td>Schwab, et al. 2005 (236)</td>
<td>Moderate</td>
</tr>
<tr>
<td>H. pylori eradication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are not associated with altered \textit{H. pylori} eradication rate when treated with esomeprazole as compared to IMs+NMs.</td>
<td>Kang, et al. 2008 (225)</td>
<td>High</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs+IMs are associated with increased \textit{H. pylori} eradication rate when treated with esomeprazole as compared to NMs.</td>
<td>Miehlke, et al. 2006 (132)</td>
<td>Moderate</td>
</tr>
</tbody>
</table>
Clinical

CYP2C19 is not associated with *H. pylori* eradication rate when treated with esomeprazole when comparing PMs vs IMs vs NMs.

Sheu, *et al.* 2005 (137)

Lee, *et al.* 2010 (243)

Pan, *et al.* 2010 (244)

Wu, *et al.* 2011 (245)

Liou, *et al.* 2011 (246)

Song, *et al.* 2016 (247)

Song, *et al.* 2016 (248)

Acid secretion indices

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Clinical CYP2C19 PMs are associated with better acid secretion indices when treated with esomeprazole as compared to IMs.</th>
<th>Sahara, et al. 2013 (145)</th>
<th>Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>Clinical CYP2C19 PMs are associated with better acid secretion indices when treated with esomeprazole as compared to NMs.</td>
<td>Sahara, et al. 2013 (145)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Clinical</td>
<td>Clinical CYP2C19 IMs are associated with better acid secretion indices when treated with esomeprazole as compared to NMs.</td>
<td>Hunfeld, et al. 2010 (214)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Clinical</td>
<td>Clinical CYP2C19 PMs are not associated with altered acid secretion indices when treated with esomeprazole as compared to IMs+NMs.</td>
<td>Li, et al. 2007 (251)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 is not associated with acid secretion indices when treated with esomeprazole when comparing PMs vs IMs vs NMs.</td>
<td>Kagami, et al. 2016 (250)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>Kagami, et al. 2016 (250)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>Yi, et al. 2017 (234)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 IMs are associated with better acid secretion indices when treated with esomeprazole as compared to NMs.</td>
<td>Hunfeld, et al. 2012 (233)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Clinical</td>
<td>Kagami, et al. 2016 (250)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>Yi, et al. 2017 (234)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Toxicity

<table>
<thead>
<tr>
<th>Clinical</th>
<th>CYP2C19 UMs have an increased risk for agranulocytosis when treated with esomeprazole.</th>
<th>Dury, et al. 2012 (153)</th>
<th>Weak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>CYP2C19 is not associated with risk for adverse events when treated with esomeprazole when comparing PMs vs IMs vs NMs.</td>
<td>Miehlke, et al. 2008 (238)</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

*Rating scheme described in the Supplemental Material
IM, intermediate metabolizer; NM, normal metabolizer; PM, poor metabolizer; RM, rapid metabolizer; UM, ultrarapid metabolizer*
TABLE S6. EVIDENCE LINKING CYP2C19 TO RABEPRAZOLE PHENOTYPE

<table>
<thead>
<tr>
<th>Type of experimental model</th>
<th>Major findings</th>
<th>References</th>
<th>Level of evidence<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs (as determined by phenotyping) are associated with decreased metabolism of rabeprazole as compared to NMs.</td>
<td>Yasuda, et al. 1995 (87)</td>
<td>Moderate</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 IMs are associated with decreased metabolism of rabeprazole as compared to RMs.</td>
<td>Roman, et al. 2014 (99)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 NMs are not associated with altered metabolism of rabeprazole as compared to RMs.</td>
<td>Roman, et al. 2014 (99)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are associated with decreased metabolism of rabeprazole as compared to IMs+NMs.</td>
<td>Yang, et al. 2009 (264)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 is associated with rabeprazole metabolism when comparing PMs vs IMs vs NMs.</td>
<td>Toda, et al. 2018 (265)</td>
<td>Weak</td>
</tr>
</tbody>
</table>

Efficacy

Remission or Healing

<table>
<thead>
<tr>
<th>Clinical</th>
<th>CYP2C19 PMs are not associated with healing rate of ulcers when treated with rabeprazole as compared to IMs+NM.</th>
<th>Ji, et al. 2006 (127)</th>
<th>Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>CYP2C19 is not associated with remission of reflux when treated with rabeprazole when comparing PMs vs IMs vs NM.</td>
<td>Kinoshita, et al. 2011 (266)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 does not alter healing rate of erosive lesions when treated with rabeprazole when comparing PMs vs IMs vs NM.</td>
<td>Yamano, et al. 2008 (259)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 is not associated with healing rate of reflux when treated with rabeprazole when comparing PMs vs IMs vs NM.</td>
<td>Ariizumi, et al. 2006 (268) Kinoshita, et al. 2018 (269)</td>
<td>Moderate</td>
</tr>
</tbody>
</table>
$H. pylori$ eradication

<table>
<thead>
<tr>
<th>Clinical Level</th>
<th>Statement</th>
<th>References</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are associated with an increased $H. pylori$ eradication rate when treated with rabeprazole as compared to IMs.</td>
<td>Furuta, et al. 2001 (270) Lay, et al. 2010 (271) Lin, et al. 2017 (130)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs+IMs are associated with increased $H. pylori$ eradication rate when treated with rabeprazole as compared to NMs.</td>
<td>Ormeci, et al. 2016 (227) Sugimoto, et al. 2017 (274) Shimoyama, et al. 2017 (242)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are not related to altered $H. pylori$ eradication rate when treated with rabeprazole as compared to IMs+NMs.</td>
<td>Kawabata, et al. 2003 (196)</td>
<td>Weak</td>
</tr>
</tbody>
</table>

Acid secretion indices

<table>
<thead>
<tr>
<th>Clinical Level</th>
<th>Statement</th>
<th>References</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are associated with better acid secretion indices when treated with rabeprazole as compared to IMs.</td>
<td>Horai, et al. 2001 (252) Shirai, et al. 2001 (61) Sugimoto, et al. 2004 (253)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are associated with better acid secretion indices when treated with rabeprazole as compared to NMs.</td>
<td>Horai, et al. 2001 (252)</td>
<td>High</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 IMs are associated with better acid secretion indices when treated with rabeprazole as compared to NMs.</td>
<td>Horai, et al. 2001 (252)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are associated with better acid secretion indices when treated with rabeprazole as compared to IMs+NMs.</td>
<td>Hata, et al. 2013 (205)</td>
<td>Weak</td>
</tr>
</tbody>
</table>
Clinical

<table>
<thead>
<tr>
<th>CYP2C19</th>
<th>Clinical</th>
<th>IM, intermediate metabolizer; NM, normal metabolizer; PM, poor metabolizer; RM, rapid metabolizer; UM, ultrarapid metabolizer</th>
</tr>
</thead>
</table>
| CYP2C19 is associated with acid secretion indices when treated with rabeprazole when comparing PMs vs IMs vs NMs. | Adachi, *et al.* 2000 (149)
Hu, *et al.* 2005 (254)
Hu, *et al.* 2006 (255)
Li, *et al.* 2007 (251)
Nishino, *et al.* 2010 (283)
Sugimoto, *et al.* 2010 (282)
Furuta, *et al.* 2010 (148)
Sheng, *et al.* 2010 (263)
Sugimoto, *et al.* 2010 (282) | Weak |

Toxicity

<table>
<thead>
<tr>
<th>CYP2C19</th>
<th>Toxicity</th>
<th>IM, intermediate metabolizer; NM, normal metabolizer; PM, poor metabolizer; RM, rapid metabolizer; UM, ultrarapid metabolizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2C19 PMs are associated with increased risk for celecoxib-induced small bowel injury when treated with rabeprazole as compared to IMs+NM.</td>
<td>Nuki, et al. 2017 (287)</td>
<td>Weak</td>
</tr>
</tbody>
</table>

| CYP2C19 PMs are not associated with risk for adverse events when treated with rabeprazole as compared to NM. | Hokari, *et al.* 2001 (272) | Weak |

aRating scheme described in the Supplemental Material
TABLE S7. EVIDENCE LINKING CYP2C19 TO PROTON PUMP INHIBITOR PHENOTYPE (MIXED COHORT)

<table>
<thead>
<tr>
<th>Type of experimental model</th>
<th>Major findings</th>
<th>References</th>
<th>Level of evidence<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs have decreased metabolism of lansoprazole and pantoprazole as compared to NMs.</td>
<td>Metz, et al. 2006 (288)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 IMs have decreased metabolism of lansoprazole and pantoprazole as compared to NMs.</td>
<td>Metz, et al. 2006 (288)</td>
<td>Weak</td>
</tr>
<tr>
<td>Efficacy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remission or Healing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs+IMs are associated with increased esophageal eosinophilia remission rate when treated with esomeprazole, lansoprazole, omeprazole, pantoprazole and rabeprazole as compared to NMs+RMs+UMs.</td>
<td>Molina-Infante, et al. 2015 (49)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs+IMs are associated with increased healing rate of erosive esophagitis when treated with lansoprazole, omeprazole and rabeprazole as compared to NMs.</td>
<td>Kawara, et al. 2017 (289)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs+IMs are associated with decreased healing rate of nonerosive reflux disease when treated with lansoprazole, omeprazole and rabeprazole as compared to NMs.</td>
<td>Kawara, et al. 2017 (289)</td>
<td>Weak</td>
</tr>
<tr>
<td>H. pylori eradication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are not associated with altered H. pylori eradication rate when treated with lansoprazole and omeprazole as compared to IMs.</td>
<td>Furuta, et al. 2001 (290)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are not associated with altered H. pylori eradication rate when treated with lansoprazole, omeprazole and rabeprazole as compared to IMs.</td>
<td>Take, et al. 2003 (291)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2C19 PMs are associated with an increased H. pylori eradication rate when treated with lansoprazole and omeprazole as compare to NMs.</td>
<td>Furuta, et al. 2001 (290)</td>
<td>Moderate</td>
</tr>
</tbody>
</table>
Clinical CYP2C19 PMs are not associated with altered *H. pylori* eradication rate when treated with lansoprazole and rabeprazole as compared to NMs. Miki, *et al.* 2003 (293) Weak

Clinical CYP2C19 PMs are associated with increased *H. pylori* eradication rate when treated with lansoprazole, omeprazole and rabeprazole as compared to NMs. Take, *et al.* 2003 (291) Moderate

Sugimoto, *et al.* 2006 (294)

Clinical CYP2C19 IMs are associated with an increased *H. pylori* eradication rate when treated with lansoprazole and omeprazole as compared to NMs. Furuta, *et al.* 2001 (290) Moderate

Furuta, *et al.* 2004 (292)

Clinical CYP2C19 IMs are associated with an increased *H. pylori* eradication rate when treated with omeprazole and pantoprazole as compared to NMs. Gawronska-Szklarz, *et al.* 2005 (295) Weak

Clinical CYP2C19 IMs are not associated with altered *H. pylori* eradication rate when treated with lansoprazole and rabeprazole as compared to NMs. Miki, *et al.* 2003 (293) Weak

Clinical CYP2C19 IMs are associated with increased *H. pylori* eradication rate when treated with lansoprazole, omeprazole and rabeprazole as compared to NMs. Sugimoto, *et al.* 2006 (294) Weak

Clinical CYP2C19 PMs are associated with an increased *H. pylori* eradication rate when treated with esomeprazole and pantoprazole as compared to IMs+NMs. Kang, *et al.* 2008 (225) Weak

Clinical CYP2C19 PMs are not associated with altered *H. pylori* eradication rate when treated with esomeprazole and pantoprazole as compared to IMs+NMs. Lee, *et al.* 2014 (226) Weak

Clinical CYP2C19 PMs+IMs are associated with increased *H. pylori* eradication rate when treated with esomeprazole, lansoprazole, omeprazole, pantoprazole and rabeprazole as compared to IMs+NMs. Ormeci, *et al.* 2016 (227) Weak

Clinical CYP2C19 PMs+IMs are associated with increased *H. pylori* eradication rate when treated with pantoprazole and rabeprazole as compared to NMs. Hong, *et al.* 2016 (138) Weak

Clinical CYP2C19 PMs+IMs are associated with increased *H. pylori* eradication rate when treated with esomeprazole and omeprazole as compared to NMs. Kuo, *et al.* 2010 (296) Moderate

Shimoyama, *et al.* 2017 (242) Weak
Clinical | *CYP2C19* is not associated with *H. pylori* eradication rate when treated with omeprazole and rabeprazole when comparing PMs vs IMs vs NMs.
| Miyoshi, *et al.* 2001 (297)
| Weak

Clinical | *CYP2C19* is not associated with *H. pylori* eradication rate when treated with esomeprazole or rabeprazole when comparing PMs vs IMs vs NMs.
| Pan, *et al.* 2010 (244)
| Weak

Acid secretion indices

Clinical | CYP2C19 PMs+IMs are associated with better acid secretion indices when treated with esomeprazole, lansoprazole and omeprazole as compared to NMs.
| Egan, *et al.* 2003 (298)
| Weak

Clinical | CYP2C19 IMs+NMs are associated with better acid secretion indices when treated with esomeprazole, lansoprazole, omeprazole and pantoprazole as compared to RMs+UMs.
| Franciosi, *et al.* 2018 (47)
| Weak

Clinical | *CYP2C19* is not associated with acid secretion indices when treated with esomeprazole, lansoprazole and rabeprazole when comparing PMs vs IMs vs NMs.
| Shiotani, *et al.* 2018 (299)
| Weak

Other

Clinical | CYP2C19 PMs+IMs are associated with decreased resistance to treatment with esomeprazole, lansoprazole, omeprazole and pantoprazole in patients with reflux as compared to RMs+UMs.
| Franciosi, *et al.* 2018 (48)
| Weak

Clinical | CYP2C19 PMs+IMs are associated with decreased resistance to treatment with esomeprazole, lansoprazole, omeprazole and pantoprazole in patients with reflux as compared to NMs.
| Franciosi, *et al.* 2018 (48)
| Weak

Clinical | *CYP2C19* is not associated with resistance to treatment with PPIs in patients with ulcers when comparing PMs vs IMs vs NMs.
| Wada, *et al.* 2002 (300)
| Weak

Rating scheme described in the Supplemental Material

IM, intermediate metabolizer; NM, normal metabolizer; PM, poor metabolizer; RM, rapid metabolizer; UM, ultrarapid metabolizer
TABLE S8. DOSING RECOMMENDATIONS FOR ESOMEPRAZOLE AND RABEPRAZOLE BASED ON CYP2C19 PHENOTYPE

<table>
<thead>
<tr>
<th>CYP2C19 Phenotype<sup>a</sup></th>
<th>Implications for Phenotypic Measures</th>
<th>Therapeutic Recommendation</th>
<th>Classification of Recommendation<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2C19 ultrarapid metabolizer</td>
<td>Inconsistent findings regarding the effect of CYP2C19 genotype on pharmacokinetics and therapeutic response</td>
<td>No recommendation</td>
<td>No recommendation</td>
</tr>
<tr>
<td>CYP2C19 rapid metabolizer</td>
<td>Inconsistent findings regarding the effect of CYP2C19 genotype on pharmacokinetics and therapeutic response</td>
<td>No recommendation</td>
<td>No recommendation</td>
</tr>
<tr>
<td>CYP2C19 normal metabolizer</td>
<td>Inconsistent findings regarding the effect of CYP2C19 genotype on pharmacokinetics and therapeutic response</td>
<td>No recommendation</td>
<td>No recommendation</td>
</tr>
<tr>
<td>CYP2C19 likely intermediate metabolizer</td>
<td>Inconsistent findings regarding the effect of CYP2C19 genotype on pharmacokinetics and therapeutic response</td>
<td>No recommendation</td>
<td>No recommendation</td>
</tr>
<tr>
<td>CYP2C19 intermediate metabolizer</td>
<td>Inconsistent findings regarding the effect of CYP2C19 genotype on pharmacokinetics and therapeutic response</td>
<td>No recommendation</td>
<td>No recommendation</td>
</tr>
<tr>
<td>CYP2C19 likely poor metabolizer</td>
<td>Inconsistent findings regarding the effect of CYP2C19 genotype on pharmacokinetics and therapeutic response</td>
<td>No recommendation</td>
<td>No recommendation</td>
</tr>
<tr>
<td>CYP2C19 poor metabolizer</td>
<td>Inconsistent findings regarding the effect of CYP2C19 genotype on pharmacokinetics and therapeutic response</td>
<td>No recommendation</td>
<td>No recommendation</td>
</tr>
</tbody>
</table>

^aThe online CYP2C19 Frequency Table provides phenotype frequencies for major race/ethnic groups, and the online CYP2C19 Diplototype-Phenotype Table provides a complete list of possible diplotypes and phenotype assignments.

^bRating scheme described in the Supplemental Material
REFERENCES

(68) Uno, T., Niioka, T., Hayakari, M., Yasui-Furukori, N., Sugawara, K. & Tateishi, T. Absolute bioavailability and metabolism of omeprazole in relation to CYP2C19

(73) Shiohira, H., Yasui-Furukori, N., Yamada, S., Tateishi, T., Akamine, Y. & Uno, T. Hydroxylation of R(+) and S(-)-omeprazole after racemic dosing are different among the CYP2C19 genotypes. Pharm Res 29, 2310-6 (2012).

(83) Uno, T., Sugimoto, K., Sugawara, K. & Tateishi, T. The role of cytochrome P2C19 in R-warfarin pharmacokinetics and its interaction with omeprazole. Ther Drug Monit 30, 276-81 (2008).

(133) Sezgin, O., Barlas, I.O., Ucbilek, E., Yengel, E. & Altintas, E. Modified sequential Helicobacter pylori eradication therapy using high dose omeprazole and amoxicillin in the initial phase in the extensive metaboliser Turkish patients for CYP2C19 polymorphism is ineffective. Acta Gastroenterol Belg 77, 3-7 (2014).

(144) Shimatani, T., Inoue, M., Kuroiwa, T., Horikawa, Y., Mieno, H. & Nakamura, M. Effect of omeprazole 10 mg on intragastric pH in three different CYP2C19 genotypes,

(212) Shao, J.G., Jiang, W., Li, K.Q., Lu, J.R. & Sun, Y.Y. Blood concentration of pantoprazole sodium is significantly high in hepatogenic peptic ulcer patients, especially those with a poor CYP2C19 metabolism. J Dig Dis 10, 55-60 (2009).

(220) Gawronska-Szklarz, B., Siuda, A., Kurzawski, M., Bielicki, D., Marlicz, W. & Drozdzik, M. Effects of CYP2C19, MDR1, and interleukin 1-B gene variants on the eradication rate

(268) Ariizumi, K. *et al.* Therapeutic effects of 10 mg/day rabeprazole administration on reflux esophagitis was not influenced by the CYP2C19 polymorphism. *J Gastroenterol Hepatol* **21**, 1428-34 (2006).

(284) Sugimoto, M. *et al.* Rabeprazole 10 mg q.d.s. decreases 24-h intragastric acidity significantly more than rabeprazole 20 mg b.d. or 40 mg o.m., overcoming CYP2C19 genotype. *Aliment Pharmacol Ther* **36**, 627-34 (2012).

