Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for Human Leukocyte Antigen B (HLA-B) Genotype and Allopurinol Dosing: 2015 Update

Y Saito1, LK Stamp2, KE Caudle3, MS Hershfield4, EM McDonagh5, JT Callaghan6,7,8, W Tassaneeyakul9, T Mushiroda10, N Kamatani11, BR Goldspiel12, EJ Phillips13,14, TE Klein5 and MTM Lee15,16,17

The Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for HLA-B*58:01 Genotype and Allopurinol Dosing was originally published in February 2013. To update this guideline, we conducted a focused review of the literature published between 1966 to October 2014 on HLA genotype and allopurinol (see Supplemental Material online). Our inclusion criteria for this guideline update also included other HLA variants besides HLA-B. The HLA-B*58:01 allele frequency tables (Supplemental Tables S1 and S2) have also been updated. The literature review yielded 26 relevant primary studies showing an association between HLA-B*58:01 and allopurinol severe cutaneous adverse reactions (SCAR) (Supplemental Table S3). In addition, 12 studies showed associations for HLA-A*33:03 (seven studies) or HLA-C*03:02 (five studies) (Supplemental Table S3). However, the strength of the evidence for HLA-A*33:03 and HLA-C*03:02 did not warrant inclusion in this update (please see “Other considerations” in the Supplementary Materials). We found no new evidence that would change our original recommendations for HLA-B*58:01 and allopurinol dosing; therefore, the original guideline publication and recommendation remains current. The 2012 American College of Rheumatology Guidelines for Management of Gout recommends testing for the HLA-B*58:01 allele in selected subpopulations with elevated risk for allopurinol hypersensitivity syndrome (individuals of Korean descent with stage 3 or worse chronic kidney disease, and

1Division of Medicinal Safety Science, National Institute of Health Sciences, Kamiyoga, Setagaya, Tokyo, Japan; 2Department of Medicine, University of Otago, Christchurch, New Zealand; 3Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA; 4Departments of Medicine and Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA; 5Department of Genetics, Stanford University Medical Center, Stanford, California, USA; 6ACOS for Research, Department of Veterans Affairs Medical Center, Indianapolis, Indiana, USA; 7Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; 8Department of Pharmacology/Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA; 9Department of Pharmacology, Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; 10Laboratory for Pharmacogenetics, RIKEN, Center for Genomic Medicine, Yokohama, Japan; 11Institute of Data Analysis, StaGen, Tokyo, Japan; 12Pharmacy Department, National Institutes of Health Clinical Center, Bethesda, Maryland, USA; 13Division of Infectious Diseases, Institute of Immunology and Infectious Disease, Murdoch University, Murdoch, Western Australia; 14Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA; 15Laboratory for International Alliance on Genomic Research, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; 16National Center for Genome Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; 17School of Chinese Medicine, China Medical University, Taichung, Taiwan. Correspondence: MTM Lee (mikelee@src.riken.jp)

Received 17 March 2015; accepted 3 June 2015; advance online publication 16 July 2015. doi:10.1002/cpt.161
those of Han-Chinese or Thai descent) prior to initiation of the drug.

All new and updated CPIC guidelines will address dosing in pediatrics. Although none of the evidence linking HLA-B*58:01 to allopurinol hypersensitivity was conducted in children, there is no reason to suspect that children positive for HLA-B*58:01 would be at less risk of allopurinol hypersensitivity reactions than adults positive for HLA-B*58:01.

CPIC guidelines are designed to help clinicians use genetic information to optimize drug therapy, and to do this effectively, pharmacogenetic information must be incorporated into electronic health records (EHRs) with clinical decision support (CDS).4–6 To provide additional resources for applying CPIC guidelines into the EHR, CPIC created an informatics working group focused on supporting the adoption of CPIC guidelines within a clinical electronic environment. This guideline provides these clinical implementation resources as part of the Supplementary Material, which include workflow diagrams that illustrate the storage of a pharmacogenetic result in an EHR and the design of CDS alerts (Supplemental Figures S1 and S2). Tables that correspond to these workflow diagrams are provided that translate genotype test results into an interpreted phenotype (Supplemental Tables S4–S7). These tables provide summary genotype/phenotype terms, example text for documentation in the EHR and point-of-care alerts, and cross-references for drug and gene names to widely used terminologies and standardized nomenclature systems.

We recognize that each organization and EHR vendor may have different requirements and preferences for implementing pharmacogenetics within a given electronic environment. The intent of these resources is to synthesize foundational knowledge that provides a common starting point for clinical implementation so that individual organizations do not have to create a similar knowledge base for each new gene/drug pair that is implemented. Future CPIC guidelines and guideline updates will provide similar resources to guide the implementation of gene-drug pairs into the EHR.

DISCLAIMER

Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines reflect expert consensus based on clinical evidence and peer-reviewed literature available at the time they are written, and are intended only to assist clinicians in decision-making, as well as to identify questions for further research. New evidence may have emerged since the time a guideline was submitted for publication. Guidelines are limited in scope and are not applicable to interventions or diseases not specifically identified. Guidelines do not account for all individual variation among patients and cannot be considered inclusive of all proper methods of care or exclusive of other treatments. It remains the responsibility of the healthcare provider to determine the best course of treatment for the patient. Adherence to any guideline is voluntary, with the ultimate determination regarding its application to be solely made by the clinician and the patient. CPIC assumes no responsibility for any injury to persons or damage to property related to any use of CPIC’s guidelines, or for any errors or omissions.

Additional Supporting Information may be found in the online version of this article.

ACKNOWLEDGMENTS

We acknowledge the critical input of members of CPIC of the Pharmacogenomics Research Network (PGRN) particularly Dr Mary V. Relling (St Jude Children’s Research Hospital) and the CPIC informatics working group. This work was funded by the National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS) (PAAR4Kids (U01 GM92666), PharmGKB (R24 GM61374), and U01 HL0105198), the Health Labor Sciences Research Grants from MHLW of Japan, and the National Science and Technology Development Agency, Thailand.

CONFLICT OF INTEREST

T.E.K. is a stockholder for Personalis Inc. L.K.S. has been a consultant for Astra Zeneca. As of January 2015, E.M.M. is Lead Scientific Curator of Genomics England, Queen Mary University. M.S.H. is a co-inventor of Pegloticase (Krystexxa®) and receives royalties from Crealta Pharmaceuticals. The other authors declare no conflicts of interest.

© 2015 American Society for Clinical Pharmacology and Therapeutics