Supplement to:

Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for \textit{CYP2B6} and Efavirenz-containing Antiretroviral Therapy

Zeruesenay Desta1, Roseann S. Gammal2,3, Li Gong4, Michelle Whirl-Carrillo4, Aditya H. Gaur5, Chonlaphat Sukasem6,7, Jennifer Hockings8, Alan Myers9, Marelize Swart1, Rachel Tyndale10, Collen Masimirembwa11, Otito F. Iwuchukwu12, Sanika Chirwa13, Jeffrey Lennox14, Andrea Gaedigk15, Teri Klein4, David W. Haas13,16

1 Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA
2 Department of Pharmacy Practice, MCPHS University School of Pharmacy, Boston, MA, USA
3 Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
4 Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
5 Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
6 Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
7 Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center, Faculty of Medicine Ramathibodi Hospital, Bangkok, Thailand
8 Department of Pharmacy and Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
9 Department of Diagnostic & Biomedical Sciences, The University of Texas Health Sciences Center School of Dentistry, Houston, TX, USA
10 Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
11 African Institute of Biomedical Science & Technology, Wilkins Hospital, Harare, Zimbabwe
12 Division of Pharmaceutical Sciences, Fairleigh Dickinson University School of Pharmacy, Florham Park, NJ, USA
13 Department of Internal Medicine, Meharry Medical College School of Medicine, Nashville, TN, USA
14 Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
15 Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Kansas City, Kansas City, MO, USA
16 Departments of Medicine, Pharmacology, Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
TABLE OF CONTENTS

GUIDELINE UPDATES ... 3
LITERATURE REVIEW .. 3
GENETIC TEST INTERPRETATION .. 4
AVAILABLE GENETIC TEST OPTIONS .. 5
LEVELS OF EVIDENCE LINKING GENOTYPE TO PHENOTYPE .. 7
STRENGTH OF RECOMMENDATIONS ... 8
RESOURCES TO INCORPORATE PHARMACOGENETICS INTO AN ELECTRONIC HEALTH RECORD WITH CLINICAL DECISION SUPPORT ... 9
TABLE S1. EVIDENCE LINKING CYP2B6 TO EFAVIRENZ PHENOTYPE 12
FIGURE S1. APPARENT ORAL CLEARANCE (CL/F) OF EFAVIRENZ (600 MG/DAY) IN HIV-POSITIVE INDIVIDUALS GENOTYPED FOR CYP2B6 VARIANTS .. 24
REFERENCES .. 25
GUIDELINE UPDATES

The Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2B6 and efavirenz therapy is published in full on the CPIC website (https://cpicpgx.org/guidelines/cpic-guideline-for-efavirenz-based-on-cyp2b6-genotype/)\(^1\). Relevant information will be reviewed periodically and updated guidelines published online.

LITERATURE REVIEW

The PubMed® database (1966 to August 2017) was searched for the following keywords: (CYP2B6 OR cytochrome P450 2B6) AND efavirenz. Using these search terms, 282 publications were identified. Study inclusion criteria included publications that incorporated analyses for the association between CYP2B6 genotypes and efavirenz pharmacokinetic parameters or efavirenz-related clinical outcomes (e.g., CNS toxicity, viral load, CD4+ T lymphocyte count, treatment discontinuation). Non-English manuscripts were excluded. Following the application of these inclusion and exclusion criteria, 150 publications were reviewed and included in the evidence table (Table S1).

The CYP2B6 Frequency Table \(^1\) was made by searching the PubMed® database (1966 to May 2018) for the following keywords: (CYP2B6 OR cytochrome P450 2B6) AND (allele OR haplotype OR frequency OR population OR ethnic OR race OR racial OR ethnicity) with filter limits to retrieve “English” literature. Studies were considered for inclusion in the CYP2B6 Frequency Table if (1) the ancestry of the population was clearly indicated; (2) either allele
frequencies or genotype frequencies were reported; and (3) the method by which variants were
genotyped was indicated. Given the limited information on CYP2B6 allele frequency from the
PubMed search, allele frequencies reported in the gnomAD browser
(http://gnomad.broadinstitute.org/- exomes and genomes) and ensembl (grch37.ensembl.org -
exomes or genomes) were also included for several population groups.

GENETIC TEST INTERPRETATION

The haplotype, or star (*) allele name, is determined by a specific SNP or a combination of SNPs
that are interrogated in the genotyping analysis. In addition, structural variants such as the
CYP2B6 breakpoint to a 529-bp intron 4 region with high homology to CYP2B7P1, resulting in
the CYP2B6*29 partial deletion allele (2) and CYP2B6/2B7P1 duplicated fusion allele
(CYP2B6*30) (3) have been identified. The frequency of the CYP2B6*29 and CYP2B6*30
alleles is very low in the population tested (~0.005% in African Americans and Asians,
respectively) and are identified in other population studies as evidenced by entries in the Data
Base of Genomic Variants (DGV) for this region. Although little is generally known about
structural variants of the CYP2B6 gene, these findings highlight that the CYP2B6 gene can
undergo rearrangements.

The genotypes that constitute the haplotype, or star (*) alleles for CYP2B6, and the rs# for each
of the specific genomic nucleotide alterations that define the alleles, are described in the

CYP2B6 Allele Definition Table online. The genotype results are generally reported as a
diplotype, which includes one maternal and one paternal star allele (e.g., *1/*6). The CYP2B6
function associated with each of the common star alleles is summarized in the CYP2B6 Allele Functionality Table online.

AVAILABLE GENETIC TEST OPTIONS

Commercially available genetic testing options change over time. The Genetic Testing Registry provides a central location for voluntary submission of genetic test information by providers and is available at: http://www.ncbi.nlm.nih.gov/gtr. Desirable characteristics of pharmacogenetic tests, including naming of alleles and test report contents, have been extensively reviewed by an international group, including CPIC members (4). CPIC recommends that clinical laboratories adhere to these test reporting standards. CPIC gene-specific tables adhere to these allele nomenclature standards. Moreover, these tables (CYP2B6 Allele Definition Table, CYP2B6 Allele Functionality Table, and CYP2B6 Allele Frequency Table) may be used to assemble lists of known functional and actionable pharmacogenetic variants and their population frequencies, which may inform decisions as to whether tests are adequately comprehensive in interrogations of alleles.

Because the genomic structure of the CYP2B6 gene is complex, there are several factors that cause potential uncertainty in the genotyping results and phenotype predictions. 1) Since it is impractical to test for every variation in the CYP2B6 gene, patients with rare variants may be assigned a default genotype; this can happen when a patient’s one or two rare allele(s) are not included in the genotype test used. Several variants of the CYP2B6 gene with potential functional consequences are rare (MAF <1%) in most populations, and thus sequencing-based approaches are recommended if patients receiving efavirenz develop CNS toxicity. 2) In some cases, there
are gene units involved in duplication (CYP2B6*30) and partial deletion (CYP2B6*29). These two variants have potential functional impact and detecting structural variants like CYP2B6*29 and *30 may have significant pharmacogenetic implications when accurately interpreting the metabolizer phenotype. For example, if just assessing copy number of exons 1 through 4, *30 could be misclassified as CYP2B6*1x2, which predicts an ultrarapid metabolizer phenotype. Both the two TaqMan qPCR assays (one in exon 4 and a second located 12.6 kb downstream of the CYP2B6 gene) and a long-range PCR-based sequence strategy is needed to interrogate and correctly assign the breakpoint regions of the identified CYP2B6*29 deletion and CYP2B6*30 duplication fusion alleles (3). If the specific gene units involved in duplication and deletion or other rearrangements are not specifically tested for, the phenotype prediction may be inaccurate. Currently, these variants are rare across different populations. This along with the difficulty of the genotyping assays of these variants to incorporate into currently existing CYP2B6 genotyping test platforms may limit the utility of genetic tests of structural variants. 3) Some SNPs exist on multiple alleles (e.g., c.516G>T is found in combination with other variants in 11 other CYP2B6 alleles [*6, *7, *13, *19, *20, *26, *29, *34, *36, *37, *38]. If testing indicates heterozygosity for multiple SNPs, it may be difficult to accurately assign a specific genotype. For example, an individual heterozygous for the c.516G>T, c.785A>G, and c.1459C>T variants in the CYP2B6 gene could be classified as CYP2B6*1/*7 or *5/*6 unless PCR-based haplotype determination or cloning methods is developed to distinguish between these two genotypes (5). 4) Allele frequencies may vary considerably among patients of different populations and ethnic backgrounds. For example, CYP2B6*18 and other rare variants are relatively common in black populations and have a considerably lower prevalence, or are even absent, in other ethnic groups such as Caucasians of European ancestry. Thus, the alleles that should be tested for a given
population may vary considerably. 5) As described above, both CYP2B6*29 (partial deletion) and CYP2B6*30 (duplication representing CYP2B7/CYP2B6 hybrid [crossover in intron 4] require complementary assays including sequencing to distinguish between the two variants. 6) The possibility that rare SNPs or pseudogenes may interfere with PCR amplification and/or detection on a particular platform or assay cannot be ruled out. For example, testing for c.785A>G is challenging using the commercially available TaqMan assay (6). This SNP is located in a region that is identical CYP2B7, a nonfunctional pseudogene. Small CYP2B6-specific PCR amplicons bracketing c.785A>G cannot be reliably generated. Thus, the genotype assay is often performed in two steps where exon 5 is first amplified with primer sand then a pre-amplified CYP2B6-specific long-range PCR amplicon is used as a template for a custom TaqMan genotyping assay.

LEVELS OF EVIDENCE LINKING GENOTYPE TO PHENOTYPE

The evidence summarized in Table S1 is graded on a scale of high, moderate, and weak (7) based upon the level of evidence:

- **High**: Evidence includes consistent results from well-designed, well-conducted studies.
- **Moderate**: Evidence is sufficient to determine effects, but the strength of the evidence is limited by the number, quality or consistency of the individual studies, generalizability to routine practice, or the indirect nature of the evidence.
- **Weak**: Evidence is insufficient to assess the effects on health outcomes because of limited number or power of studies, important flaws in their design or conduct, gaps in the chain of evidence, or lack of information.
STRENGTH OF RECOMMENDATIONS

CPIC’s therapeutic recommendations are based on weighing the evidence from a combination of preclinical functional and clinical data, as well as on some existing disease-specific consensus guidelines. Some of the factors that are taken into account in evaluating the evidence supporting therapeutic recommendations include *in vivo* pharmacokinetic and pharmacodynamic data, *in vitro* enzyme activity of tissues expressing wild-type/reference or variant-containing CYP2B6, *in vitro* CYP2B6 enzyme activity from tissues isolated from individuals of known CYP2B6 genotypes, and *in vivo* pre-clinical and clinical pharmacokinetic and pharmacodynamic studies.

Overall, the therapeutic recommendations are simplified to allow rapid interpretation by clinicians. CPIC uses a slight modification of a transparent and simple system for recommendations adopted from the rating scale for evidence-based guidelines on the use of antiretroviral agents (8):

- **Strong** recommendation for the statement: The evidence is high quality and the desirable effects clearly outweigh the undesirable effects.

- **Moderate** recommendation for the statement: There is a close or uncertain balance as to whether the evidence is high quality and the desirable effects clearly outweigh the undesirable effects.

- **Optional** recommendation for the statement: The desirable effects are closely balanced with undesirable effects, or the evidence is weak or based on extrapolations. There is room for differences in opinion as to the need for the recommended course of action.

- **No recommendation**: There is insufficient evidence, confidence, or agreement to provide a recommendation to guide clinical practice at this time.
RESOURCES TO INCORPORATE PHARMACOGENETICS INTO AN ELECTRONIC HEALTH RECORD WITH CLINICAL DECISION SUPPORT

Clinical decision support (CDS) tools integrated within electronic health records (EHRs) can help guide clinical pharmacogenetics at the point of care (9-14). See https://cpicpgx.org/guidelines/cpic-guideline-for-efavirenz-based-on-cyp2b6-genotype/ for resources to support the adoption of CPIC guidelines within an EHR (15). Based on the capabilities of various EHRs and local preferences, we recognize that approaches may vary across organizations. Our intent is to synthesize foundational knowledge that provides a common starting point for incorporating CYP2B6 genotype results in an EHR to guide efavirenz use.

Effectively incorporating pharmacogenetic information into an EHR to optimize drug therapy should have some key attributes. Pharmacogenetic results, an interpreted phenotype, and a concise interpretation or summary of the result must be documented in the EHR (16). To incorporate a phenotype in the EHR in a standardized manner, genotype test results provided by the laboratory must be consistently translated into an interpreted phenotype (Table 1, main manuscript; CYP2B6 Diplotye to Phenotype Table (1)). Because clinicians must be able to easily find the information, the interpreted phenotype may be documented as a problem list entry or in a patient’s summary section; these phenotypes are best stored in the EHR at the “person level” rather than at the date-centric “encounter level”. Additionally, results should be entered as standardized and discrete terms to facilitate using them to provide point-of-care CDS (see Efavirenz Pre- and Post-Test Alerts and Flow Chart for example CDS alerts;
The CDS alerts for CYP2B6/efavirenz apply for adult patients and for children > 40 kg.

Because pharmacogenetic results have lifetime implications and clinical significance, results should be placed into a section of the EHR that is accessible independent of the test result date to allow clinicians to quickly find the result at any time after it is initially placed in the EHR. To facilitate this process, CPIC is providing gene-specific information figures and tables that include full diplotype to phenotype tables, diagram(s) that illustrate how CYP2B6 pharmacogenetic test results could be entered into an EHR, example EHR consultation/genetic test interpretation language and widely used nomenclature systems (see https://cpicpgx.org/guidelines/cpic-guideline-for-efavirenz-based-on-cyp2b6-genotype/) (19).

Point-of-care CDS should be designed to effectively notify clinicians of prescribing implications at any time after the test result is entered into the EHR. CPIC is also providing gene-drug specific tables that provide guidance to achieve these objectives with diagrams that illustrate how point-of-care CDS should be entered into the EHR, example pre- and post-test alert language, and widely used nomenclature systems for relevant drugs (see https://cpicpgx.org/guidelines/cpic-guideline-for-efavirenz-based-on-cyp2b6-genotype/).
TABLE S1. EVIDENCE LINKING CYP2B6 TO EFAVIRENZ PHENOTYPE

<table>
<thead>
<tr>
<th>Type of experimental model</th>
<th>Major findings</th>
<th>References</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro</td>
<td>No association found between CYP2B6<sup>4</sup> (c.785 A>G) and catalytic activity of CYP2B6 or metabolism of efavirenz.</td>
<td>Supports statement: Zhang, et al. 2011 (22) Does not support statement: Ariyoshi, et al. 2011 (23)</td>
<td>Weak</td>
</tr>
<tr>
<td>In vitro</td>
<td>CYP2B6<sup>5</sup> (c.1459 C>T) is associated with increased catalytic activity of CYP2B6 and increased efavirenz metabolism.</td>
<td>Supports statement: Zhang, et al. 2011 (22) Does not support statement: Desta, et al. 2007 (24)</td>
<td>Weak</td>
</tr>
<tr>
<td>In vitro</td>
<td>CYP2B6<sup>7</sup> (c.516 G>T, c.785 A>G, c.1459 C>T) is associated with increased catalytic activity of CYP2B6 and increased efavirenz metabolism.</td>
<td>Zhang, et al. 2011 (22)</td>
<td>Weak</td>
</tr>
<tr>
<td>In vitro</td>
<td>CYP2B6<sup>8</sup> (c.415 A>G) is associated with abolished catalytic activity of CYP2B6 and no efavirenz metabolism.</td>
<td>Zhang, et al. 2011 (22)</td>
<td>Weak</td>
</tr>
<tr>
<td>In vitro</td>
<td>CYP2B6<sup>9</sup> (c.516 G>T) is associated with decreased catalytic activity of CYP2B6 and decreased efavirenz metabolism.</td>
<td>Zhang, et al. 2011 (22)</td>
<td>Weak</td>
</tr>
<tr>
<td>In vitro</td>
<td>CYP2B6<sup>13</sup> (c.415 A>G, c.516 G>T, c.785 A>G) is associated with decreased catalytic activity of CYP2B6 and decreased efavirenz metabolism.</td>
<td>Desta, et al. 2007 (24)</td>
<td>Weak</td>
</tr>
<tr>
<td>In vitro</td>
<td>CYP2B6<sup>14</sup> (c.419 G>A) is associated with decreased catalytic activity of CYP2B6 and decreased efavirenz metabolism.</td>
<td>Desta, et al. 2007 (24)</td>
<td>Weak</td>
</tr>
<tr>
<td>In vitro</td>
<td>CYP2B6*15 (c.1172 T>A) is associated with decreased catalytic activity of CYP2B6 and decreased efavirenz metabolism.</td>
<td>Desta, et al. 2007 (24)</td>
<td>Weak</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------------------------</td>
<td>------</td>
</tr>
</tbody>
</table>
| Clinical | CYP2B6 c.516 G>T is associated with increased efavirenz plasma, cerebrospinal fluid, breast milk, and/or hair concentrations. | Abdelhady, et al. 2016 (26)
Rohrich, et al. 2016 (27)
Abdelhady, et al. 2014 (28)
Sanchez Martin, et al. 2013 (29)
Swart, et al. 2013 (30)
Sukasem, et al. 2013 (31)
Jiang, et al. 2013 (32)
Heil, et al. 2012 (33)
Ngaimisi, et al. 2010 (34)
Mukonzo, et al. 2009 (35)
Kwara, et al. 2008 (36)
Gatanaga, et al. 2007 (37)
Rotger, et al. 2007 (38)
Tsuchiya, et al. 2004 (39)
Anagnostopoulos, et al. 2013 (40)
Gallien, et al. 2017 (41)
Sanchez-Martin, et al. 2016 (42)
Sandkovsky, et al. 2017 (43)
Orrell, et al. 2016 (44)
Nightingale, et al. 2016 (45)
Mukonzo, et al. 2016 (46)
Bienczak, et al. 2016 (47)
Pinillos, et al. 2016 (48)
Swart, et al. 2016 (49)
Cusato, et al. 2016 (50)
Meng, et al. 2015 (51)
Dickinson, et al. 2015 (52)
Abdissa, et al. 2015 (53)
Maganda, et al. 2016 (54)
Dhoro, et al. 2015 (55)
Olagunju, et al. 2015 (56)
Habtewold, et al. 2015 (57)
Olagunju, et al. 2015 (58) | High |
<table>
<thead>
<tr>
<th>Authors</th>
<th>Year, et al.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinxadi, et al.</td>
<td>2015</td>
<td>(59)</td>
</tr>
<tr>
<td>Winston, et al.</td>
<td>2015</td>
<td>(60)</td>
</tr>
<tr>
<td>Mukonzo, et al.</td>
<td>2014</td>
<td>(61)</td>
</tr>
<tr>
<td>Olagunju, et al.</td>
<td>2014</td>
<td>(62)</td>
</tr>
<tr>
<td>Lee, et al.</td>
<td>2014</td>
<td>(63)</td>
</tr>
<tr>
<td>Ramachandran, et al.</td>
<td>2013</td>
<td>(64)</td>
</tr>
<tr>
<td>Mukonzo, et al.</td>
<td>2014</td>
<td>(65)</td>
</tr>
<tr>
<td>Bienvenu, et al.</td>
<td>2014</td>
<td>(66)</td>
</tr>
<tr>
<td>Naftalin, et al.</td>
<td>2014</td>
<td>(67)</td>
</tr>
<tr>
<td>Salem, et al.</td>
<td>2014</td>
<td>(68)</td>
</tr>
<tr>
<td>Sarfo, et al.</td>
<td>2014</td>
<td>(69)</td>
</tr>
<tr>
<td>Bertrand, et al.</td>
<td>2014</td>
<td>(70)</td>
</tr>
<tr>
<td>Lee, et al.</td>
<td>2014</td>
<td>(71)</td>
</tr>
<tr>
<td>Ngaimisi, et al.</td>
<td>2013</td>
<td>(72)</td>
</tr>
<tr>
<td>Swart, et al.</td>
<td>2013</td>
<td>(30)</td>
</tr>
<tr>
<td>Mukonzo, et al.</td>
<td>2013</td>
<td>(73)</td>
</tr>
<tr>
<td>Sukasem, et al.</td>
<td>2013</td>
<td>(31)</td>
</tr>
<tr>
<td>Manosuthi, et al.</td>
<td>2013</td>
<td>(74)</td>
</tr>
<tr>
<td>Cortes, et al.</td>
<td>2013</td>
<td>(75)</td>
</tr>
<tr>
<td>Holzinger, et al.</td>
<td>2012</td>
<td>(76)</td>
</tr>
<tr>
<td>Gandhi, et al.</td>
<td>2012</td>
<td>(77)</td>
</tr>
<tr>
<td>Mutwa, et al.</td>
<td>2012</td>
<td>(78)</td>
</tr>
<tr>
<td>Sukasem, et al.</td>
<td>2012</td>
<td>(79)</td>
</tr>
<tr>
<td>Heil, et al.</td>
<td>2012</td>
<td>(33)</td>
</tr>
<tr>
<td>Viljoen, et al.</td>
<td>2012</td>
<td>(80)</td>
</tr>
<tr>
<td>Maimbo, et al.</td>
<td>2012</td>
<td>(81)</td>
</tr>
<tr>
<td>Sanchez, et al.</td>
<td>2011</td>
<td>(82)</td>
</tr>
<tr>
<td>Habtewold, et al.</td>
<td>2011</td>
<td>(83)</td>
</tr>
<tr>
<td>Ngaimisi, et al.</td>
<td>2011</td>
<td>(84)</td>
</tr>
<tr>
<td>Strehlau, et al.</td>
<td>2011</td>
<td>(85)</td>
</tr>
<tr>
<td>Kwara, et al.</td>
<td>2011</td>
<td>(86)</td>
</tr>
<tr>
<td>Elens, et al.</td>
<td>2010</td>
<td>(87)</td>
</tr>
<tr>
<td>Lindfelt, et al.</td>
<td>2010</td>
<td>(88)</td>
</tr>
<tr>
<td>Gounden, et al.</td>
<td>2010</td>
<td>(89)</td>
</tr>
<tr>
<td>Cabrera Figueroa, et al.</td>
<td>2010</td>
<td>(90)</td>
</tr>
<tr>
<td>Ref.</td>
<td>Authors</td>
<td>Year</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>91</td>
<td>Chen, et al.</td>
<td>2010</td>
</tr>
<tr>
<td>92</td>
<td>Cabrera Figueroa, et al.</td>
<td>2010</td>
</tr>
<tr>
<td>93</td>
<td>Uttayamakul, et al.</td>
<td>2010</td>
</tr>
<tr>
<td>97</td>
<td>To, et al.</td>
<td>2009</td>
</tr>
<tr>
<td>100</td>
<td>Kwara, et al.</td>
<td>2009</td>
</tr>
<tr>
<td>103</td>
<td>Gupta, et al.</td>
<td>2008</td>
</tr>
<tr>
<td>104</td>
<td>Kwara, et al.</td>
<td>2008</td>
</tr>
<tr>
<td>105</td>
<td>Wyen, et al.</td>
<td>2008</td>
</tr>
<tr>
<td>106</td>
<td>Nyakutira, et al.</td>
<td>2008</td>
</tr>
<tr>
<td>107</td>
<td>Lowenhaupt, et al.</td>
<td>2007</td>
</tr>
<tr>
<td>108</td>
<td>Saitoh, et al.</td>
<td>2007</td>
</tr>
<tr>
<td>109</td>
<td>Motsinger, et al.</td>
<td>2006</td>
</tr>
<tr>
<td>110</td>
<td>Wang, et al.</td>
<td>2006</td>
</tr>
<tr>
<td>111</td>
<td>Ribaudo, et al.</td>
<td>2006</td>
</tr>
<tr>
<td>112</td>
<td>Haas, et al.</td>
<td>2005</td>
</tr>
<tr>
<td>113</td>
<td>Rodriguez-Novoa, et al.</td>
<td>2005</td>
</tr>
<tr>
<td>114</td>
<td>Hasse, et al.</td>
<td>2005</td>
</tr>
<tr>
<td>115</td>
<td>Liu, et al.</td>
<td>2017</td>
</tr>
<tr>
<td>116</td>
<td>Haas, et al.</td>
<td>2004</td>
</tr>
<tr>
<td>117</td>
<td>Rotger, et al.</td>
<td>2005</td>
</tr>
<tr>
<td>118</td>
<td>Mathiesen, et al.</td>
<td>2006</td>
</tr>
<tr>
<td>119</td>
<td>ter Heine, et al.</td>
<td>2008</td>
</tr>
<tr>
<td>120</td>
<td>Puthanakit, et al.</td>
<td>2009</td>
</tr>
<tr>
<td>121</td>
<td>Habtewold, et al.</td>
<td>2017</td>
</tr>
<tr>
<td>123</td>
<td>Gengiah, et al.</td>
<td>2015</td>
</tr>
<tr>
<td>124</td>
<td>Duarte, et al.</td>
<td>2017</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2B6 c.516 G>T is associated with increased efficacy (decreased viral load, increased T-cell count) of efavirenz therapy.</td>
<td>Supports statement: Nijhawan, et al. 2008 (125) Luo, et al. 2016 (126) Reay, et al. 2017 (127)</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Type</td>
<td>Statement</td>
<td>Supporting Evidence</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Clinical</td>
<td>\textit{CYP2B6} c.516 G>T is associated with discontinuation of efavirenz therapy.</td>
<td>Does not support statement: Queiroz, et al. 2017 (131)</td>
</tr>
<tr>
<td>Clinical</td>
<td>Does not support statement:</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Powers, et al. 2009 (142)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Haas, et al. 2004 (115)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sukasem, et al. 2013 (31)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manosuthi, et al. 2013 (74)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sukasem, et al. 2012 (79)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rohrich, et al. 2016 (27)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sanchez, et al. 2011 (82)</td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supports statement:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meng, et al. 2015 (51)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sukasem, et al. 2013 (31)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manosuthi, et al. 2013 (74)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mutwa, et al. 2012 (78)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sukasem, et al. 2012 (79)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heil, et al. 2012 (33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maimbo, et al. 2012 (81)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sanchez, et al. 2011 (82)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lindfelt, et al. 2010 (88)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Duarte, et al. 2017 (123)</td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Does not support statement:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ribaudo, et al. 2010 (144)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chen, et al. 2010 (91)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wang, et al. 2006 (109)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotger, et al. 2007 (38)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reay, et al. 2017 (127)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weak</td>
<td></td>
</tr>
</tbody>
</table>

Clinical

No association found between CYP2B6*2 (c.64 C>T) and efavirenz plasma and/or hair concentrations.

Clinical

CYP2B6*2 (c.64 C>T) is associated with increased toxicity (CNS side effects) of efavirenz therapy.

Clinical

CYP2B6*4 (c.785 A>G) is associated with increased efavirenz plasma concentrations.\(^b\)

Clinical

No association found between CYP2B6*5 (c.1459 C>T) and efavirenz plasma and/or hair concentrations.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>No association found between CYP2B6*11 (c.136 A>G) and increased toxicity (CNS side effects) of efavirenz therapy.</td>
<td>Mukonzo, et al. 2013 (73)</td>
<td>Weak</td>
</tr>
<tr>
<td>Clinical</td>
<td>CYP2B6*16 (c.785 A>G and c.983 T>C) is associated with increased efavirenz plasma concentrations.</td>
<td>Wang, et al. 2006 (109)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Clinical</td>
<td>No association found between CYP2B6*17 and efavirenz hair concentrations.</td>
<td>Rohrich, et al. 2016 (27)</td>
<td>Weak</td>
</tr>
</tbody>
</table>
| Clinical | No association found between \(CYP2B6^{*18} \) (c.983 T>C) and increased efficacy (decreased viral load, increased T-cell count) of efavirenz therapy. | Gandhi, et al. 2012 (77)
Mutwa, et al. 2012 (78)
Heil, et al. 2012 (33)
Maimbo, et al. 2012 (81)
Elens, et al. 2010 (87)
Wyen, et al. 2008 (104)
Gengiah, et al. 2015 (122)
Reay, et al. 2017 (127) | Does not support statement:
Maganda, et al. 2016 (54)
Olagunju, et al. 2015 (56)
Olagunju, et al. 2015 (58)
Bienvenu, et al. 2014 (66)
Kwara, et al. 2009 (94)
Kwara, et al. 2009 (100)
Duarte, et al. 2017 (123) |
| Clinical | \(CYP2B6^{*18} \) (c.983 T>C) is associated with decreased toxicity (CNS side effects) of efavirenz therapy. | Orrell, et al. 2016 (44)
Dickinson, et al. 2016 (132)
Rohrich, et al. 2016 (27)
Dickinson, et al. 2015 (52)
Bienvenu, et al. 2014 (66)
Frasco, et al. 2012 (129) | Supports statement:
Dickinson, et al. 2016 (132)
Dhoro, et al. 2013 (135) |
| Clinical | No association found between \(CYP2B6^{*18} \) (c.983 T>C) and discontinuation of efavirenz therapy. | Dickinson, et al. 2016 (132)
Dickinson, et al. 2015 (52) | Does not support statement:
Dhoro, et al. 2015 (55)
Sarfo, et al. 2014 (69) |
| Clinical | \(CYP2B6 \) g.15582 C>T is associated with increased efavirenz plasma concentrations. | Sinxadi, et al. 2015 (59)
Holzinger, et al. 2012 (76) | Supports statement:
Sinxadi, et al. 2015 (59)
Holzinger, et al. 2012 (76) |
<table>
<thead>
<tr>
<th>Clinical</th>
<th>Does not support statement:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Evans, et al. 2015 (146)</td>
</tr>
<tr>
<td></td>
<td>Dickinson, et al. 2015 (52)</td>
</tr>
</tbody>
</table>

Clinical: Does not support statement:

- *CYP2B6* g.15582 C>T and increased efficacy (decreased viral load) of efavirenz therapy.
- *CYP2B6* g.15582 C>T is associated with increased toxicity (CNS side effects) of efavirenz therapy.
- No association found between *CYP2B6* g.15582 C>T and increased efficacy (decreased viral load) of efavirenz therapy.
- No association found between *CYP2B6* g.15582 C>T and discontinuation of efavirenz therapy.
- *CYP2B6* g.21563 C>T is associated with increased efavirenz plasma concentrations.
- *CYP2B6* g.18492 T>C is associated with decreased efavirenz plasma concentrations.
- CYP2B6 poor metabolizers have decreased metabolite-to-efavirenz plasma concentration ratios.
- CYP2B6 poor metabolizers have increased efavirenz plasma concentrations.

Clinical

<table>
<thead>
<tr>
<th>Does not support statement:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evans, et al. 2015 (146)</td>
</tr>
<tr>
<td>Dickinson, et al. 2015 (52)</td>
</tr>
</tbody>
</table>

Clinical

- *CYP2B6* g.15582 C>T is associated with increased toxicity (CNS side effects) of efavirenz therapy.
- No association found between *CYP2B6* g.15582 C>T and discontinuation of efavirenz therapy.
- *CYP2B6* g.21563 C>T is associated with increased efavirenz plasma concentrations.
- *CYP2B6* g.18492 T>C is associated with decreased efavirenz plasma concentrations.
- CYP2B6 poor metabolizers have decreased metabolite-to-efavirenz plasma concentration ratios.
- CYP2B6 poor metabolizers have increased efavirenz plasma concentrations.

Clinical

- *CYP2B6* g.21563 C>T is associated with increased efavirenz plasma concentrations.
- CYP2B6 poor metabolizers have decreased metabolite-to-efavirenz plasma concentration ratios.
- CYP2B6 poor metabolizers have increased efavirenz plasma concentrations.

Clinical

- *CYP2B6* g.15582 C>T is associated with increased toxicity (CNS side effects) of efavirenz therapy.
- No association found between *CYP2B6* g.15582 C>T and discontinuation of efavirenz therapy.
- *CYP2B6* g.21563 C>T is associated with increased efavirenz plasma concentrations.
- *CYP2B6* g.18492 T>C is associated with decreased efavirenz plasma concentrations.
- CYP2B6 poor metabolizers have decreased metabolite-to-efavirenz plasma concentration ratios.
- CYP2B6 poor metabolizers have increased efavirenz plasma concentrations.
| Clinical | CYP2B6 poor metabolizers are at an increased risk of discontinuing efavirenz therapy. | Robarge, et al. 2016 (158) | |
| Clinical | No association found between CYP2B6 intermediate metabolizers and discontinuation of efavirenz therapy. | Leger, et al. 2016 (161) |
| Clinical | Efavirenz dosing based on CYP2B6 genotype (e.g., c.516 G>T) is associated with therapeutic efavirenz plasma concentrations. | Bolton Moore, et al. 2017 (165) Hui, et al. 2016 (166) | High |

Supports statement:
- Johnson, et al. 2013 (162)
- Ribaudo, et al. 2010 (144)
- Mollan, et al. 2017 (163)

Does not support statement:
- Gross, et al. 2017 (157)
- Haas, et al. 2014 (164)
<table>
<thead>
<tr>
<th>Rating</th>
<th>Statement</th>
<th>Supporting Evidence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Efavirenz dose reduction in patients with elevated efavirenz plasma concentrations (e.g., CYP2B6 poor metabolizers) yields therapeutic efavirenz plasma concentrations, decreases toxicity (CNS side effects), and maintains efficacy (as indicated by viral load).</td>
<td>Fayet Mello, et al. 2011 (159)</td>
<td>High</td>
</tr>
</tbody>
</table>

Rating scheme described in the Supplemental Material

*The CYP2B6*4 (c.785 A>G) functional assignment is “increased function.” However, CYP2B6*4 has frequently been associated with increased efavirenz plasma concentrations in clinical studies, likely due to the fact that it is often inherited with c.516 G>T, a SNP associated with decreased CYP2B6 function. Together, 785 A>G and 516 G>T comprise the CYP2B6*6 haplotype.

*Decreased efavirenz concentrations in hair samples were associated with CYP2B6*17 in the South African Black cohort only.*
FIGURE S1. APPARENT ORAL CLEARANCE (CL/F) OF EFAVIRENZ (600 MG/DAY) IN HIV-POSITIVE INDIVIDUALS GENOTYPED FOR CYP2B6 VARIANTS. Genotype predicted phenotypes were based on CYP2B6*6 and *18 alleles as described in Table 1 (main manuscript). The data were derived from 10 independent clinical studies (65, 70, 90, 99, 105, 120, 123, 156, 166, 170).
REFERENCES

(33) Heil, S.G. et al. Associations between ABCB1, CYP2A6, CYP2B6, CYP2D6, and CYP3A5 alleles in relation to efavirenz and nevirapine pharmacokinetics in HIV-infected individuals. Ther Drug Monit 34, 153-9 (2012).

(35) Heil, S.G. et al. Associations between ABCB1, CYP2A6, CYP2B6, CYP2D6, and CYP3A5 alleles in relation to efavirenz and nevirapine pharmacokinetics in HIV-infected individuals. Ther Drug Monit 34, 153-9 (2012).

(62) Olagunju, A. et al. CYP2B6 516G>T (rs3745274) and smoking status are associated with efavirenz plasma concentration in a Serbian cohort of HIV patients. *Ther Drug Monit* 36, 734-8 (2014).

(149) Sukasem, C. *et al.* Low level of efavirenz in HIV-1-infected Thai adults is associated with the CYP2B6 polymorphism. *Infection* 42, 469-74 (2014).

