Supplement to:

Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for the use of potent volatile anesthetic agents and succinylcholine in the context of RYR1 or CACNA1S genotypes

Stephen G. Gonsalves, PhD, MPH1, Robert T. Dirksen, PhD2, Katrin Sangkuhl, PhD3, Rebecca Pulk, PharmD4, Maria Alvarellos, MS3, Teresa Vo, PharmD5, Keiko Hikino, MD6, Dan Roden, MD7, Teri Klein, PhD3, S. Mark Poler, MD8, Sephalie Patel, MD9, Kelly E. Caudle, PharmD, PhD10, Ronald Gordon, MD, PhD11, Barbara Brandom, MD12, Leslie G. Biesecker, MD.1,13

Author Affiliations:
1. Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
2. Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
3. The Department of Biomedical Data Science, Stanford University, Stanford, California, USA
4. Center for Pharmacy Innovation and Outcomes, Geisinger, Danville, Pennsylvania, USA
5. College of Medicine Internal Medicine and Dept of Pharmacy Practice, University of South Florida College of Pharmacy, Tampa, Florida, USA
6. Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois, USA
7. Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
8. Departments of Anesthesiology, Geisinger Medical Center, Danville, Pennsylvania, USA
9. H. Lee Moffitt Cancer Center, Department of Anesthesiology, Tampa, Florida, USA
10. Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
11. University of California San Diego, Department of Anesthesiology, San Diego, California, USA
12. Department of Anesthesiology, Mercy Hospital UPMC, North American MH Registry of MHAUS, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
13. Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.

Corresponding Author: Leslie G. Biesecker, M.D., lesb@mail.nih.gov, 50 South Drive Room 5140, Bethesda, MD, 20892; Phone: (301) 402-204; contact@cpicpgx.org
LITERATURE REVIEW

We searched the PubMed database (1966 to February 2018) for keywords (RYR1 OR ryanodine receptor type 1) AND (malignant hyperthermia) and (CACNA1S OR calcium voltage-gated channel subunit alpha1 S) AND (malignant hyperthermia). Using the specified search criteria, 213 publications for RYR1 and 30 publications for CACNA1S were identified after excluding non-English publications, commentaries, proceedings, or review articles and non-human studies or in-vitro studies without subject information. Inclusion criteria included analyses for the association between malignant hyperthermia susceptibility and the variants on the European Malignant Hyperthermia Group (EMHG) diagnostic MH mutation list (access 08/14/2018). Following application of the inclusion criteria, 101 publications for RYR1 and six publications for CACNA1S were reviewed and included in the evidence table.

AVAILABLE GENETIC TEST OPTIONS
Commercially available genetic testing options change over time. Below is some information that may assist in evaluating options.

Desirable characteristics of pharmacogenetic tests, including naming of alleles and test report contents, have been extensively reviewed by an international group, including CPIC members (1). CPIC recommends that clinical laboratories adhere to these test reporting standards. CPIC gene-specific tables (see Allele Functionality Table and Frequency Table (2)) adhere to these allele nomenclature standards (1). Moreover, the Allele Functionality and Frequency Tables may be used to assemble lists of known functional and actionable pharmacogenetic variants and their population frequencies, which may inform decisions as to whether tests are adequately comprehensive in interrogations of alleles. Some of these general approaches do not align well with the genetics of RYRI, CACNAIS, and MHS and those issues are highlighted in the accompanying article.

RYRI is a gene for which most actionable genomic variants are rare (MAF <0.01) in most populations, and thus sequencing-based approaches are recommended.
RYR1 is a gene that is included on the list of actionable secondary findings by the American College of Medical Genetics and Genomics (3, 4).

The Genetic Testing Registry (GTR) provides a central location for voluntary submission of genetic test information by providers and is available at http://www.ncbi.nlm.nih.gov/gtr/.

LEVELS OF EVIDENCE
The evidence summarized in *Supplemental Table S1* is graded using a scale modified slightly from Valdes et al. (5)

- **High:** Evidence includes consistent results from well-designed, well-conducted studies.
- **Moderate:** Evidence is sufficient to determine effects, but the strength of the evidence is limited by the number, quality, or consistency of the individual studies; generalizability to routine practice; or indirect nature of the evidence.
- **Weak:** Evidence is insufficient to assess the effects on health outcomes because of limited number or power of studies, important flaws in their design or conduct, gaps in the chain of evidence, or lack of information

For this guideline, authors defined the above levels of evidence using the following criteria:

- **High:** Includes evidence of positive IVCT or CHCT results.
- **Moderate:** Includes evidence of an MH reaction BUT not the IVCT or CHCT. May include positive CICR results.
- **Weak:** Includes no evidence of positive contracture test results or MH reaction.

STRENGTH OF RECOMMENDATIONS
CPIC’s recommendations are based on weighing the evidence from a combination of preclinical functional and clinical data, as well as on some existing disease-specific consensus guidelines (6). Overall, the therapeutic recommendations are simplified to allow rapid interpretation by clinicians. CPIC uses a slight modification of a transparent
and simple system for just three categories for recommendations adopted from the rating scale for evidence-based recommendations on the use of antiretroviral agents (7):

Strong recommendation for the statement: “The evidence is high quality and the desirable effects clearly outweigh the undesirable effects.”

Moderate recommendation for the statement: “There is a close or uncertain balance” as to whether the evidence is high quality and the desirable clearly outweigh the undesirable effects.

Optional recommendation for the statement: The desirable effects are closely balanced with undesirable effects, or the evidence is weak or based on extrapolations. There is room for differences in opinion as to the need for the recommended course of action.

No recommendation: There is insufficient evidence, confidence, or agreement to provide a recommendation to guide clinical practice at this time

RESOURCES TO INCORPORATE PHARMACOGENETICS INTO AN ELECTRONIC HEALTH RECORD WITH CLINICAL DECISION SUPPORT

Clinical decision support (CDS) tools integrated within electronic health records (EHRs) can help guide clinical pharmacogenetics at the point of care (8-12). See https://cpicpgx.org/guidelines/ cpic-guideline-for-rry1-and-cacna1s for resources to support the adoption of CPIC guidelines within an EHR. Based on the capabilities of various EHRs and local preferences, we recognize that approaches may vary across organizations. Our intent is to synthesize foundational knowledge that provides a common starting point for incorporating the use of RYRI and/or CACNAS1 genotype results to guide anesthesia and succinylcholine use.

Effectively incorporating pharmacogenetic information into an EHR to optimize drug therapy should have some key attributes. Pharmacogenetic results, an interpreted phenotype, and a concise interpretation or summary of the result must be documented in the EHR (13, 14). To incorporate a phenotype in the EHR in a standardized manner, genotype test results provided by the laboratory must be consistently translated into an interpreted phenotype (**Table 1, main manuscript**). Because clinicians must be able to
easily find the information, the interpreted phenotype may be documented as a problem list entry or in a patient summary section; these phenotypes are best stored in the EHR at the “person level” rather than at the date-centric “encounter level”. Additionally, results should be entered as standardized and discrete terms to facilitate using them to provide point-of-care CDS (8, 15).

Because pharmacogenetic results have lifetime implications and clinical significance, results should be placed into a section of the EHR that is accessible independent of the test result date to allow clinicians to quickly find the result at any time after it is initially placed in the EHR. To facilitate this process, CPIC is providing gene-specific information figures and tables that include full genotype to phenotype tables, diagram(s) that illustrate how RYR1 and/or CACNA1S pharmacogenetic test results could be entered into an EHR, example EHR consultation/genetic test interpretation language and widely used nomenclature systems for genes relevant to the CPIC guideline (see https://www.pharmgkb.org/page/RYR1RefMaterials)(2).

Passive Clinical Decision Support

Given genomic information relating to RYR1 and CACNA1S has high value outside of traditional pharmacy ordering pathways, traditional CDS approaches have limited utility in integrating this genetic information into clinical care.

Point-of-care CDS should be designed to effectively notify clinicians of prescribing implications at any time after the test result is entered into the EHR. CPIC is also providing gene-drug specific tables that provide guidance to achieve these objectives with diagrams that illustrate how point-of-care CDS should be entered into the EHR, example pre- and post-test alert language, and widely used nomenclature systems for drugs relevant to the CPIC guideline (see https://cpicpgx.org/guidelines/cpic-guideline-for-ryr1-and-cacna1s).

Additional Implementation Resources

Anesthesia Work Flows
Anesthesia providers are uniquely positioned among medical professionals to order, prepare, and administer medications without the intervention of a pharmacist. This is particularly true of inhaled anesthetics and complicates the implementation of this guideline. We acknowledge that pharmacy support for surgery varies by practice site. An in depth understanding of anesthesia work flows and documentation practices at an institutional level is essential to the implementation of this guideline.

Genetic Counselor Involvement

MHS is an autosomal dominant trait. As such, a positive result for a patient has far reaching familial ramifications beyond those conferred with general pharmacogenomic findings. We recommend that patients identified to have MHS be referred to a genetic counselor for explanation of results and to initiate testing of at-risk relatives.

Additional Professional Resources

The Malignant Hyperthermia Association of the United States (MHAUS) is a non-profit organization focused on increasing patient and provider knowledge of malignant hyperthermia (www.mhaus.org). Through their mission of promoting optimal care and scientific understanding of MHS and related disorders, they have developed healthcare professional facing resources to prepare facilities to manage an MH crisis and have curated recommendations for the treatment of affected patients.
SUPPLEMENTAL TABLE S1. EVIDENCE LINKING *RYR1* AND *CACNA1S* GENOTYPE WITH MALIGNANT HYPERTERMIA

<table>
<thead>
<tr>
<th>Type of Study (in vitro, in vivo, preclinical, or clinical)</th>
<th>Variant rsID cDNA and Predicted Protein Change (RYR1 NM_000540.2; NP_000531.2, CACNA1S NM_000069.2; NP_000060.2)</th>
<th>Major Findings</th>
<th>References</th>
<th>Level of Evidence</th>
</tr>
</thead>
</table>
| Clinical | rs193922753
| ~RYR1 c.488G>T; p.(Arg163Leu) | *RYR1* variant associated with Malignant Hyperthermia (MH) based on positive IVCTs and MH reaction. | Monnier, et al. (2005) (17)
| Fiszer, et al. (2015) (40) | High |
| Clinical | rs1801086
| ~RYR1 c.742G>A or c.742G>C; p.(Gly248Arg) | *RYR1* variant associated with Malignant Hyperthermia (MH) based on positive IVCTs, positive CHCTs, and MH reactions and/or family history of MH reaction. | Gillard, et al. (1992) (41)
| Carpenter, et al. (2009) (36)
| Brandom, et al. (2013) (39) | High |
| Clinical | rs193922762
| ~RYR1 c.982C>T; p.(Arg328Trp) | *RYR1* variant associated with Malignant Hyperthermia (MH) based on positive CHCTs and MH reaction in proband. | Loke, et al. (2003) (43) | High |
| Clinical | rs121918592
| ~RYR1 c.1021G>C; p.(Gly341Arg) | *RYR1* variant associated with Malignant Hyperthermia (MH) based on positive IVCT, abnormally enhanced CICR, and family history of MH reaction. | Monnier, et al. (2005) (17)
| Ibarra, et al. (2006) (33) | High |
| Clinical | rs121918592
| ~RYR1 c.1021G>A; p.(Gly341Arg) | *RYR1* variant associated with Malignant Hyperthermia (MH) based on positive IVCTs, positive CHCTs, and MH reactions and/or family history of MH. | Quane, et al. (1994) (44)
| Healy, et al. (1996) (45)#
| Monsieurs, et al. (1996) (46)#
| Adeokun, et al. (1997) (47)
| Barone, et al. (1999) (24)#
| Rueffert, et al. (2002) (26)
<p>| Monnier, et al. (2002) (30)# | High |</p>
<table>
<thead>
<tr>
<th>Clinical</th>
<th>rs193922764</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>rs118192116</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Clinical</td>
<td>rs118192162</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
</tbody>
</table>

| Clinical | rs193922768 | RYR1 c.1597C>T; p.(Arg533Cys) | RYR1 variant associated with Malignant Hyperthermia (MH) based on positive IVCTs. | Tammaro, et al. (2003) (55) | High |
| Clinical | rs144336148 | RYR1 c.1598G>A; p.(Arg533His) | RYR1 variant associated with Malignant Hyperthermia (MH) based on positive CICR and MH reaction. | Ibarra, et al. (2006) (33)* *p.R533H found together with p.P1592L | Weak |
| Clinical | rs118192163
RYR1 c.6488G>A;
p.(Arg2163His) | *RYR1* variant associated with Malignant Hyperthermia (MH) based on positive IVCTs, positive CHCTs, and MH reactions and/or family history of MH. | Manning, et al. (1998) (81)
Sei, et al. (2002) (82)
Sambuughin, et al. (2005) (32)
Ibarra, et al. (2006) (33)
Galli, et al. (2006) (34)
Carpenter, et al. (2009) (36)
Kraevak et al. (2011) (37)
Brandom, et al. (2013) (39)
Bamaga, et al. (2016) (79) | High |
| --- | --- | --- | --- | --- |
| Clinical | rs118192176
RYR1 c.6502G>A;
p.(Val2168Met) | *RYR1* variant associated with Malignant Hyperthermia (MH) based on positive IVCTs, positive CHCT, and MH reactions and/or family history of MH. | Manning, et al. (1998) (81)
Brandt, et al. (1999) (68)
Girad, et al. (2001) (72)
Rueffert, et al. (2002) (26)
Sei, et al. (2002) (82)
Tammaro, et al. (2003) (55)
Monnier, et al. (2005) (17)
Yeh, et al. (2005) (57)
Carpenter, et al. (2009) (36)
Tammaro, et al. (2011) (19)
Brandom, et al. (2013) (39)
Klingler, et al. (2014) (20)
Forrest, et al. (2015) (83)
| Clinical | rs118192177
RYR1 c.6617C>G;
p.(Thr2206Arg) or
c.6617C>T;
p.(Thr2206Met) | *RYR1* variant associated with Malignant Hyperthermia (MH) based on positive IVCTs, positive CHCTs, MH reactions and/or family history of MH. | Manning, et al. (1998) (81)
Brandt, et al. (1999) (68)
Rueffert, et al. (2002) (26)
Wehner, et al. (2002) (84) | High |
<table>
<thead>
<tr>
<th>Clinical</th>
<th>rs112563513</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\textit{RYR1} c.7007G>A; p.(Arg2336His)</td>
</tr>
<tr>
<td></td>
<td>Levano, et al. (2009) (53)</td>
</tr>
<tr>
<td></td>
<td>Carpenter, et al. (2009) (36)</td>
</tr>
<tr>
<td></td>
<td>Brandom, et al. (2013) (39)</td>
</tr>
<tr>
<td></td>
<td>Freiermuth, et al. (2013) (86)</td>
</tr>
<tr>
<td></td>
<td>Klingler, et al. (2014) (20)</td>
</tr>
<tr>
<td></td>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical</th>
<th>rs121918596</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\textit{RYR1} c.7042_7044delGAG; p.(Glu2348del) In some sources the variant is described as c.7042_7044delGAG, while in others c.7039_7041delGAG (rs121918596)</td>
</tr>
<tr>
<td></td>
<td>Sambuughin, et al. (2001) (87)</td>
</tr>
<tr>
<td></td>
<td>Brandom, et al. (2013) (39)*</td>
</tr>
<tr>
<td></td>
<td>Stephens, et al. (2016) (88)*</td>
</tr>
<tr>
<td></td>
<td>*variant listed as delE 2347</td>
</tr>
<tr>
<td></td>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical</th>
<th>rs193922802</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\textit{RYR1} c.7048G>A; p.(Ala2350Thr)</td>
</tr>
<tr>
<td></td>
<td>Sambuughin, et al. (2001) (89)</td>
</tr>
<tr>
<td></td>
<td>Sambuughin, et al. (2005) (32)</td>
</tr>
<tr>
<td></td>
<td>Monnier, et al. (2005) (17)</td>
</tr>
<tr>
<td></td>
<td>Carpenter, et al. (2009) (36)</td>
</tr>
<tr>
<td></td>
<td>Klingler, et al. (2014) (20)</td>
</tr>
<tr>
<td></td>
<td>High</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| Clinical | rs118192122
RYR1 c.7361G>A;
p.(Arg2454His) | RYR1 variant associated with Malignant Hyperthermia (MH) based on positive IVCTs, positive CHCTs, and MH reactions and/or family history of MH. | Barone, et al. (1999) (24)
Brandt, et al. (1999) (68)
Rueffert, et al. (2002) (26)
Tammaro, et al. (2003) (55)
Monnier, et al. (2005) (17)
Broman, et al. (2007) (76)
Carpenter, et al. (2009) (36)
Tammaro, et al. (2011) (55)
Kraeva, et al. (2011) (37)
Brandom, et al. (2013) (39)
Klingler, et al. (2014) (20)
Bamaga, et al. (2016) (79) | High |
| Clinical | rs28933397
RYR1 c.7372C>T;
p.(Arg2458Cys) | RYR1 variant associated with Malignant Hyperthermia (MH) based on positive IVCTs, and MH reaction. | Manning, et al. (1998) (104)
Barone, et al. (1999) (24)
Girard, et al. (2001) (72)
Sambuughin, et al. (2005) (32)
Monnier, et al. (2005) (17)
Galli, et al. (2006) (34)
Klingler, et al. (2014) (20) | High |
| Clinical | rs121918594
RYR1 c.7373G>A;
p.(Arg2458His) | RYR1 variant associated with Malignant Hyperthermia (MH) based on positive IVCTs, positive CICR, and MH reactions. | Manning, et al. (1998) (104)
Ibarra, et al. (2006) (33)
Carpenter, et al. (2009) (36)
Li, et al. (2017) (105) | High |
Ibarra, et al. (2006) (33) | High |
| Clinical | rs118192178
| YRI c.7522C>T;
| p.(Arg2508Cys) | YRI variant associated with Malignant Hyperthermia (MH) based on positive CICRs and MH reactions. |
| Clinical | rs118192178
| YRI c.7522C>G;
| p.(Arg2508Gly) | YRI variant associated with Malignant Hyperthermia (MH) based on positive CICRs and CICRs in CCD patients. |
| Clinical | rs118192167
| YRI c.7523G>A;
| p.(Arg2508His) | YRI variant associated with Malignant Hyperthermia (MH) based on positive CICRs, positive IVCTs, and MH reactions and/or family history of MH. |
| Clinical | rs118192167
| YRI c.7523G>A;
| p.(Arg2508His) | YRI variant associated with Malignant Hyperthermia (MH) based on positive CICRs, positive IVCTs, and MH reactions and/or family history of MH. |

Galli, et al. (2006) (34)
Brandom, et al. (2013) (39)

Ibarra, et al. (2006) (33)
Migita, et al. (2009) (107)

Moderate

Carpenter, et al. (2009) (36)
Carpenter, et al. (2009) (36)

High

Monnier, et al. (2005) (17)
Carpe, et al. (2009) (36)

High

Grievink, et al. (2010) (112)
Monnier, et al. (2000) (109)
Brown, et al. (2000) (110)
Monnier, et al. (2005) (17)
Carpe, et al. (2009) (36)

High

High

High

High
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>rs118192170</td>
<td>RYR1 c.14693T>C; p.(Ile4898Thr)</td>
<td>RYR1 variant associated with Malignant Hyperthermia (MH) based on positive IVCTs* in CCD patients. *positive IVCT results were not strong</td>
<td>Lynch, et al. (1999) (117) Broman, et al. (2007) (76)</td>
<td>Weak</td>
</tr>
</tbody>
</table>
| Clinical | rs1800559
CACNA1S c.3257G>A; p.(Arg1086His) | CACNA1S variant associated with Malignant Hyperthermia (MH) based on positive IVCTs and MH reaction and/or family history of MH. | Monnier, et al. (1997) (120)
Stewart, et al. (2001) (121)
Monnier, et al. (2002) (30)
Monnier, et al. (2005) (17) | High |

Abbreviations:
MH – Malignant Hyperthermia
IVCT - in vitro contracture test (biopsied muscle strips)
CHCT - caffeine-halothane contracture test (biopsied muscle strips)
CICR - calcium-induced calcium release test (chemically skinned muscle fibers)

Level of Evidence description:
High: Includes evidence of positive IVCT or CHCT results.
Moderate: Includes evidence of an MH reaction BUT not the IVCT or CHCT. May include positive CICR results
Weak: Includes no evidence of positive contracture test results or MH reaction.
REFERENCES

(2) CPIC. <https://cpicpgx.org/guidelines/cpic-guidelines-for-ryr1-and-cacna1s>.

Wu, S. et al. Central core disease is due to RYR1 mutations in more than 90% of patients. Brain 129, 1470-80 (2006).

Grievink, H. & Stowell, K.M. Allele-specific differences in ryanodine receptor 1 mRNA expression levels may contribute to phenotypic variability in malignant hyperthermia. Orphanet J Rare Dis 5, 10 (2010).

Monnier, N., Procaccio, V., Stieglitz, P. & Lunardi, J. Malignant-hyperthermia susceptibility is associated with a mutation of the alpha 1-subunit of the human