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[bookmark: _Toc467238945]Guideline Updates
The Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for warfarin dosing is published in full on http://www.pharmgkb.org and https://cpicpgx.org/guidelines/. Relevant information will be reviewed periodically and updated guidelines published online. 
 
[bookmark: _Toc456880076][bookmark: _Toc467238946]Literature Review
We searched the PubMed® database (1966 to 2016) for the following keywords: ((cytochrome P450 2C9 or CYP2C9) OR (VKORC1) OR (cytochrome P450 4F2 or CYP4F2) AND (warfarin) AND English [Language]).  Using these search terms, 1221publications were identified. In addition, studies annotated in PharmGKB (http://www.pharmgkb.org) were identified. Study inclusion criteria included publications that included analyses for the association between CYP2C9/VKORC1/CYP4F2 genotypes and metabolism of warfarin or warfarin-related adverse drug events or clinical outcomes. Non-English manuscripts were excluded. Following application of these inclusion criteria, 183 publications were reviewed and included in the evidence table (Supplemental Tables S1- S6).
The CYP2C9/VKORC1/CYP4F2 frequency tables (https://www.pharmgkb.org/page/cyp2c9RefMaterials; https://www.pharmgkb.org/page/vkorc1RefMaterials; https://www.pharmgkb.org/page/cyp4f2RefMaterials) were made by searching the PubMed® database (1995 to 2016). The following criteria were used for CYP2C9: (CYP2C9 or 2C9 or cytochrome P4502C9) AND (genotype OR allele OR frequency OR minor allele OR variant OR ethnic OR race OR racial OR ethnicity OR population) with filter limits set to retrieve “full-text” and “English” literature. In addition, reports were also identified from citations by others or review articles. Studies were considered for inclusion in the CYP2C9 frequency table if: (1) the ethnicity of the population was clearly indicated, (2) either allele frequencies or genotype frequencies were reported, (3) the method by which the genes were genotyped was indicated, (4) the sample population consisted of at least 50 individuals with a few exceptions (e.g., smaller cohorts that were part of larger studies) and (5) the study represented an original publication (no reviews or meta-analyses).  Similar search strategies were used for VKORC1 and CYP4F2 genes. Allele frequencies reported in phase 3 1000 Genomes were also included (http://browser.1000genomes.org/index.html) (1). 

[bookmark: _Toc373143551][bookmark: _Toc467238947]Drug: Warfarin
[bookmark: _Toc467238948]Background
Warfarin is administered as a racemic mixture of R- and S- stereoisomers. S-warfarin is 3-5 times more potent as a vitamin K antagonist than R-warfarin (2). The stereoisomers are extensively metabolized by different hepatic microsomal enzymes. S-warfarin is metabolized predominantly to 7- and 6- hydroxyl metabolites via CYP2C9 (Figure 1), whereas R-warfarin is mainly metabolized via CYP3A4 with involvement of CYP1A1, CYP1A2, CYP2C8, CYP2C9, CYP2C18 and CYP2C19 (3-6). 
Warfarin exerts its anticoagulant effect through inhibition of its molecular target Vitamin K epoxide reductase complex (VKORC1) (7). VKORC1 catalyzes the conversion of oxidized Vitamin K to reduced Vitamin K with the help of microsomal epoxide hydrolase (EPHX1). Warfarin blocks this reaction, which leads to decreased availability of the reduced Vitamin K that serves as a cofactor for gamma-glutamyl carboxylase (GGCX), and blocks the formation of functionally active clotting factors, leading to reduced coagulation (8-11). 

[bookmark: _Toc467238949]Dosing algorithms

IWPC warfarin pharmacogenetic dosing algorithm (12)
5.6044
- 0.2614 x Age in decades
+ 0.0087 x Height in cm
+ 0.0128 x Weight in kg
- 0.8677 x VKORC1 A/G
- 1.6974 x VKORC1 A/A
- 0.4854 x VKORC1 genotype unknown
- 0.5211 x CYP2C9 *1/*2
- 0.9357 x CYP2C9 *1/*3
- 1.0616 x CYP2C9 *2/*2
- 1.9206 x CYP2C9 *2/*3
- 2.3312 x CYP2C9 *3/*3
- 0.2188 x CYP2C9 genotype unknown
- 0.1092 x Asian race
- 0.2760 x Black or African American
- 0.1032 x Missing or Mixed race
+ 1.1816 x Enzyme inducer status
- 0.5503 x Amiodarone status
= Square root of weekly warfarin dose**
**The output of this algorithm must be squared to compute weekly dose in mg and divided by 7 to get the daily dose.
 
Gage, et al. (13)
Estimated daily warfarin dose (mg/day) = Exp (0.9751 - 0.3238 x VKOR_1639 + 0.4317 x BSA - 0.4008 x CYP2C9*3 - 0.00745 x Age - 0.2066 x CYP2C9*2 + 0.2029 x Target INR - 0.2538 x Amiodarone + 0.0922 x Smokes -0.0901 x AA_Race + 0.0664 x Prior_DVT_PE) 
where exp is the exponential function, BSA is in m2, the SNPs are coded 0 if absent, 1 if heterozygous, and 2 if homozygous, and race is coded as 1 if African American and 0 otherwise.

EU-PACT Loading Dose algorithm (14)

Loading dose (LD) over three days is calculated from the predicted maintenance dose (MD) as follows: 

LD3=MD/ (1- exp(-κt))(1+ exp(-κt)+ exp(-2κt))

MD is the IWPC predicted weekly maintenance dose in mg divided by 7 days. 

κ is the elimination rate constant for the CYP2C9 genotypes: 
*1/*1 = 0.0189h-1
*1/*2 = 0.0158h-1
*1/*3 = 0.0132h-1
*2/*2 = 0.0130h-1
*2/*3 = 0.009h-1
*3/*3 = 0.0075h-1
τ is the warfarin dosing interval, use 24 (24h) for once daily dosing

The loading dose regimen is gradually reduced, i.e. Day 1 dose > Day 2 dose > Day 3 dose:
Loading on Day 1: (LD3-MD) x 1.5 + MD
Loading on Day 2: ((LD3-MD) x 1 + MD
Loading on Day 3: (LD3-MD) x 0.5 + MD

Lenzini, et al. (15)
Pharmacogenetic refinement algorithm: maintenance dose (mg/week) = 
EXP (3.10894 − 0.00767 × age − 0.51611 × ln(INR) − 0.23032 × VKORC1-1639 G>A − 0.14745 × CYP2C9*2 − 0.3077 × CYP2C9*3 + 0.24597 × BSA + 0.26729 × Target INR −0.09644 × African origin − 0.2059 ×stroke − 0.11216 × diabetes − 0.1035 × amiodarone use − 0.19275 × fluvastatin use + 0.0169 × dose_2 + 0.02018 × dose_3 + 0.01065 × dose_4) 
where VKORC1 -1639 G>A is entered as 0 for G/G, 1 for A/G and 2 for A/A, CYP2C9 SNPs SNPs are coded 0 if absent, 1 if heterozygous, and 2 if homozygous, and race is coded as 1 if African origin and 0 otherwise.


[bookmark: _Toc467238950]Other considerations
[bookmark: _Toc467238951]Clinical factors.  As highlighted in the dosing algorithms, and through the histogram in Figure 2, clinical/demographic factors also significantly influence warfarin dose variability, the most significant of these being body size and age.  An additional factor that is known to affect INR stability is patient non-adherence (16, 17).  As with any drug, the patient should be counseled to ensure that there is an understanding of the importance of adherence to the prescribed warfarin regimen.  In addition, genotype does not alter the importance of patient adherence.  
[bookmark: _Toc467238952]Drug interactions. Drug interactions are common with warfarin, and significant interactions include both enzyme induction and enzyme inhibition.  Smoking also causes enzyme induction.  The dosing algorithms take into account some, but not all of the clinically important drug interactions with warfarin.  Therefore, it is important to interpret the results of genetic testing in the context of other co-administered drugs.  
[bookmark: _Toc467238953]Other genes. Variants in CALU and GGCX have been shown to affect warfarin dose and contribute to warfarin dose variations in some but not all populations.  The effects of these variants are weaker than those of CYP2C9 and/or VKORC1. Evidence linking for these genes and other genes/variants to warfarin phenotype are presented in Supplemental Table S5.
Calumenin, encoded by gene CALU, is a Ca2+-binding Protein retained in the endoplasmic reticulum. It binds to gamma—glutamyl carboxylase (GGCX) as an inhibitory chaperone to inhibit the vitamin K cycle and also affects the activity and warfarin sensitivity of VKORC1 (18).   Genetic variations in CALU have been studied for their effect on warfarin dosing. One patient homozygous for the CALU rs2290228 mutant allele was found with exceptionally high warfarin requirement (20mg/d) (19). However, this SNP and other CALU SNPs (rs11653, rs2307040, rs339054 and rs1006023) have not been shown to be significantly associated with warfarin dose in other studies (20). A new variant, rs339097 in CALU has been identified that predicts higher warfarin dose in African Americans populations, with the G allele of rs339097 associated with a 14.5% higher therapeutic warfarin dose (21). Since variations in VKORC1,  CYP2C9 and CYP4F2 genes only account for ~10% of the warfarin dose variations in African Americans, in contrast to ~35% in whites, identifying this additional SNP in CALU may help with prediction of warfarin dose, especially in African American population. This variant is also more common in African Americans with minor allele frequencies of 11–14%, but only 0.2% in Caucasians. The correlation between rs339097 and higher warfarin dose requirement was confirmed in a study of 207 Egyptian patients (22).

Gamma-glutamyl carboxylase (GGCX) is a critical component of the vitamin K cycle (Figure 1) and catalyzes the post-translational carboxylation of vitamin K-dependent proteins (23). Many of these vitamin K-dependent proteins (clotting factors F2, F7, F9, F10 and protein C, S, Z) are involved in coagulation cascades. GGCX mediates the conversion of glutamate (Glu) residues to gamma carboxyl glutamate (Gla) on these proteins to make them functionally active with the reduced vitamin K serving as an essential cofactor. Rare non-synonymous mutations in GGCX have been linked with clotting disorders such as vitamin K-dependent clotting factor deficiency  (VKCFD1, (24)) and Pseudoxanthoma Elasticum (PXE)-like disorder with multiple coagulation factor deficiency (25). Due to its pivotal role in the blood coagulations, genetic variations in the GGCX gene have been investigated for their impact on warfarin maintenance dose. One variant, rs11676382, was found to be associated with warfarin dose and explained 2% of total variance (26). This finding was confirmed in a large cohort (985 patients, mostly whites) where rs11676382 was shown to be a significant (p=0.03) predictor of residual dosing error and was associated with a 6.1% reduction in warfarin dose (95% CI: 0.6%-11.4%) per G allele (11). Another variant in GGCX, rs12714145, was shown to be associated with warfarin dose in a Swedish cohort (201 patients, (27), but failed to be replicated in subsequent studies (11, 20, 28, 29). 

[bookmark: _Toc467238954]Alternative therapies to warfarin. For over five decades coumarin anticoagulants, the most popular of which is warfarin, have been the only oral anticoagulants available world-wide.  The approval of non-vitamin K anticoagulants, also known as novel oral anticoagulants (NOACs: dabigatran, rivaroxaban, apixaban and edoxaban) provides an alternative to warfarin therapy in those with atrial fibrillation (30-34). While NOACs are not known to be influenced by genetic variability in CYP2C9 and VKORC1, their pharmacokinetics or efficacy may be influenced by other genes (35).  Advantages for NOACs include their rapid onset of anticoagulation, dosing simplicity for the clinician, and lack of need for monitoring.  There are also disadvantages, which include twice daily dosing (dabigatran and apixaban), varying bioavailability (6 to over 80%), varying dependence on renal function for elimination (25 to 80%), the lack of ability to monitor, costs, limited amounts of clinical trial data for indications other than atrial fibrillation, contraindications for mechanic heart valves, and a 30-day shelf life once opened (dabigatran), among others (36, 37). As new oral anticoagulants gain market share, reliance on warfarin will decline.  However, warfarin will continue to be widely utilized world-wide.

[bookmark: _Toc456880082][bookmark: _Toc467238955]Levels of Evidence Linking Genotype to Phenotype
The evidence summarized in Supplemental Tables S1 is graded (38) on a scale of high, moderate, and weak, based upon the level of evidence:
High: Evidence includes consistent results from well-designed, well-conducted studies.
Moderate: Evidence is sufficient to determine effects, but the strength of the evidence is limited by the number, quality, or consistency of the individual studies, generalizability to routine practice, or indirect nature of the evidence.
Weak: Evidence is insufficient to assess the effects on health outcomes because of limited number or power of studies, important flaws in their design or conduct, gaps in the chain of evidence, or lack of information.

Every effort was made to present evidence from high-quality studies, which provided the framework for the strength of therapeutic recommendations (Main manuscript Table 2).

[bookmark: _Toc373143552][bookmark: _Toc456880083][bookmark: _Toc467238956]Strength of Recommendations 
CPIC’s therapeutic recommendations are based on weighting the evidence from a combination of preclinical functional and clinical data, as well as on some existing disease-specific consensus guidelines. Some of the factors that are taken into account in evaluating the evidence supporting therapeutic recommendations include: in vivo pharmacokinetic and pharmacodynamic data, in vitro enzyme activity of tissues expressing wild-type or variant-containing gene, in vitro enzyme activity from tissues isolated from individuals of known genotypes, and in vivo pre-clinical and clinical pharmacokinetic and pharmacodynamic studies. The gene-based dosing recommendations in this guideline take into consideration the affects CYP2C9/VKORC1/CYP4F2 genetic variants may have on both clinical outcomes and warfarin pharmacokinetics. 
Overall, the therapeutic recommendations are simplified to allow rapid interpretation by clinicians. CPIC uses a slight modification of a transparent and simple system for just three categories for recommendations adopted from the rating scale for evidence-based recommendations on the use of retroviral agents (39): 
 
Strong recommendation for the statement: “The evidence is high quality and the desirable effects clearly outweigh the undesirable effects.”
Moderate recommendation for the statement: “There is a close or uncertain balance” as to whether the evidence is high quality and the desirable clearly outweigh the undesirable effects.
Optional recommendation for the statement: The desirable effects are closely balanced with undesirable effects, or the evidence is weak or based on extrapolations. There is room for differences in opinion as to the need for the recommended course of action.



[bookmark: _Toc445803010][bookmark: _Toc467238957]Supplemental Table S1. Evidence Linking CYP2C9 to warfarin phenotype
	Type of experimental model
	Major findings
	References
	Level of evidence*

	In vitro
	CYP2C9 is the primary enzyme catalyzing the metabolism and inactivation of S-warfarin.
	Rettie, et al. (1992) (3)
Rettie, et al. (1994) (40) 
Yamazaki, et al. (1998) (41)
	High

	In vitro
	CYP2C9*2 is associated with reduced catalytic activity. Substrate affinity is not affected substantially by the *2 haplotype, but the maximum rate of metabolism (Vmax) is reduced to approximately 50% of that for CYP2C9*1 (wild-type).
	Rettie, et al. (1994) (40)
Yamazaki, et al. (1998) (41)
Tang, et al. (2001) (42)
Lee, et al. (2002) (43)
Ho, et al. (2003) (44)
Kirchheiner, et al. (2005) (45)
	High

	In vitro
	CYP2C9*3 is associated with significantly reduced (nearly abolished for homozygotes) function of CYP2C9.
	Lee, et al. (2002) (43)
Ho, et al. (2003) (44)
Kirchheiner, et al. (2005) (45)
	High

	Clinical
	Individuals with CYP2C9*2 and CYP2C9*3 exhibit impaired metabolism of S-warfarin, leading to longer half-life of the drug.
	Rettie, et al. (1994) (40)
Aithal, et al. (1999) (46)
Kirchheiner, et al. (2005) (45)
Daly, et al. (2006) (47)
Lindh, et al. (2009) (48)
	High

	Clinical
	Individuals with CYP2C9*2 and CYP2C9*3 have reduced warfarin maintenance dose.
	Margaglione, et al. (2000) (49)
Taube, et al. (2000) (50)
Wadelius, et al. (2005) (27)
Samardzija, et al. (2008) (51)
Takeuchi, et al. (2009) (52)
Klein, et al. (2009) (12)
Pautas, et al. (2010) (28)
Cavallari, et al. (2011) (53)
Valentin, et al. (2012) (54)
Liang, et al. (2012) (55)
El Din, et al. (2012) (56)
Lee, et al. (2012) (57)
Pathare, et al. (2012) (58)
Santos, et al. (2013) (59)
Ozer, et al. (2013) (60)
Limdi, et al. (2015) (61)
	High


	Clinical
	CYP2C9 variants with reduced activity (CYP2C9*5, *6, *8, and *11 alleles) have reduced warfarin maintenance dose. These variants most commonly occur in individuals of African ancestry.
	Redman, et al. (2004) (62)
Tai, et al. (2005) (63)
Limdi, et al. (2007) (64)
Scott, et al. (2009) (65)
Cavallari, et al. (2010) (66)
Shahin, et al. (2011) (22)
Liu, et al. (2012) (67)
Cavallari, et al. (2013) (68)
Limdi, et al. (2015) (61)
	High


	Clinical
	CYP2C rs12777823 variant is associated with reduced warfarin dose in African Americans, independent of CYP2C9*2 and CYP2C9*3.
	Perera, et al. (2013) (69)
Drozda, et al. (2015) (70)
Limdi, et al. (2015)(61)
	High


	Clinical 
	With empiric warfarin dosing, individuals with CYP2C9*2 and CYP2C9*3 have shorter time to therapeutic INR.
	Supports statement: 
Ruud, et al. (2008) (71)
Jorgensen, et al. (2009) (72)
Limdi, et al. (2009) (73)
Pautas, et al. (2010) (28)
McMillin, et al. (2010) (74)
Ozer, et al. (2010) (75)
Zhong, et al. (2011) (76)

Does not support statement: 
Higashi, et al. (2002) (77) 
Limdi, et al. (2008) (78)
Schwarz, et al. (2008) (79)
Li, et al. (2009) (80)
Wadelius, et al. (2009) (81)
Lund, et al. (2012) (82)
Biss, et al. (2012) (83)
	Weak


	Clinical
	With empiric warfarin dosing, individuals with CYP2C9*2 and CYP2C9*3 require more time to achieve stable dose.
	Supports statement: 
Higashi, et al. (2002) (77)
Meckley, et al. (2008) (84)
Limdi, et al. (2008) (78)
Schwarz, et al. (2008) (79)
Caraco, et al. (2008) (85)
Kim, et al. (2009) (86)
Jorgensen, et al. (2009) (72)
Lund, et al. (2012) (82)

Does not support statement: 
Lima, et al. (2008) (87)
Biss, et al. (2012) (83)
Finkelman, et al. (2015) (88)
	High


	Clinical
	With empiric warfarin dosing, individuals with CYP2C9*2 and CYP2C9*3 have less time in INR therapeutic range (TTR) early in the course of therapy.
	Supports statement:
Meckley, et al. (2008) (84)
Lima, et al. (2008) (87)
Limdi, et al. (2009) (73)
Wadelius, et al. (2009) (81)
Skov, et al. (2013) (89)
Does not support statement: Taube, et al. (2000) (50)
Moreau, et al. (2012) (90)
	Moderate


	Clinical
	With empiric warfarin dosing, individuals with CYP2C9*2 and CYP2C9*3 are at increased risk of over-anticoagulation (INR>4).
	Supports statement: 
Higashi, et al. (2002) (77)
Peyvandi, et al. (2004) (91)
Voora, et al. (2005) (92)
Kealey, et al. (2007) (93)
Anderson, et al. (2007) (94)
Meckley, et al. (2008) (84)
Schwarz, et al. (2008) (79)
Lima, et al. (2008) (87)
Ruud, et al. (2008) (71)
Jorgensen, et al. (2009) (72)
Kim, et al. (2009) (86)
Limdi, et al. (2009) (73)
Wadelius, et al. (2009) (81)
Molden, et al. (2010) (95)
Pautas, et al. (2010) (28)
Moon, et al. (2011) (96)
Biss, et al. (2012) (83)
Ma, et al. (2012) (97)
Yang, et al. (2013) (98)
Gaikwad, et al. (2013) (99)
Kawai, et al. (2014) (100)
Mega, et al. (2015) (101)

Does not support statement: 
Taube, et al. (2000) (50)
Limdi, et al. (2008) (78)
Li, et al. (2009) (80)
Lund, et al. (2012) (82)
Santos, et al. (2013) (59)
Valentin, et al. (2014) (102)
	High



	Clinical
	With empiric warfarin dosing, individuals with CYP2C9*2 and CYP2C9*3 are at increased risk of bleeding.
	Supports statement:
Ogg, et al. (1999) (103)
Margaglione, et al. (2000) (49)
Higashi, et al. (2002) (77)
Sanderson, et al. (2005) (104)
Samardzija, et al. (2008) (51)
Meckley, et al. (2008) (84)
Caraco, et al. (2008) (85)
Lima, et al. (2008) (87)
Ngow, et al. (2008) (105)
Limdi, et al. (2008) (106)
Wadelius, et al. (2009) (81)
Ma, et al. (2012) (97)
Yang, et al. (2013) (98)
Gaikwad, et al. (2013) (99)
Tomek, et al. (2013) (107)
Ucar, et al. (2013) (108)
Kawai, et al (2014)(100)
Valentin, et al. (2014) (102)
Mega, et al. (2015) (101)

Does not support statement: 
Wadelius, et al. (2004) (109)
Limdi, et al. (2009) (73)
Esmerian, et al. (2011) (110)
Lund, et al. (2012) (82)
An, et al. (2014) (111)
Roth, et al. (2014) (112)
	High 


	Clinical
	CYP2C9 *1/*14 is associated with decreased warfarin dose in Korean patients
	Kim, et al. (2009) (86)
Lee, et al. (2014) (113)
	Moderate

	Clinical
	CYP2C9 rs7089580 variant is associated with higher warfarin dose in African Americans. It is also associated with higher S-warfarin clearance and CYP2C9 expression.
	Perera, et al. (2011) (114)
Hernandez, et al. (2015) (115)

	High



*Rating scheme described in the Supplemental Material


[bookmark: _Toc445803011][bookmark: _Toc467238958]Supplemental Table S2. Evidence linking VKORC1 to warfarin phenotype
	Type of experimental model
	Major findings
	References
	Level of evidence*

	In vitro
	 VKORC1-1639G>A variant is associated with VKORC1 expression.
	Rieder, et al. (2005) (116)
Yuan, et al. (2005) (117)
	High

	Clinical
	VKORC1 is the protein target for warfarin. 
	Li, et al. (2004) (118)
Rost, et al. (2004) (7)
	High

	Clinical
	VKORC1-1639G>A variant (and SNPs in high linkage disequilibrium with it) is associated with reduced warfarin maintenance dose. 
	Wadelius, et al. (2005) (27)
Rieder, et al. (2005) (116)
Yuan, et al. (2005) (117)
Schelleman, et al. (2007) (119)
Cooper, et al. (2008) (120)
Takeuchi, et al. (2009) (52)
Klein, et al. (2009) (12)
Limdi, et al. (2010) (121)
Pautas, et al. (2010) (28)
Suriapranata, et al. (2011) (122)
Liang, et al. (2012) (55)
El Din, et al. (2012) (56)
Lee, et al. (2012) (57)
Valentin, et al. (2012) (54)
Pathare, et al. (2012) (58)
Santos, et al. (2013) (59)
Ozer, et al. (2013) (60)
Limdi, et al. (2015) (61)
	High


	Clinical
	With empiric warfarin dosing, individuals with VKORC1-1639G>A are likely to require shorter time to achieve first INR in therapeutic range, but have no difference in time to stable dose. 
	Schelleman, et al. (2007) (119)
Meckley, et al. (2008) (84)
Limdi, et al. (2008) (78)
Schwarz, et al. (2008) (79)
Jorgensen, et al. (2009) (72)
Kim, et al. (2009) (86)
Limdi, et al. (2009) (73)
Li, et al. (2009) (80)
Wadelius, et al. (2009) (81)
Ozer, et al. (2010) (75)
McMillin, et al. (2010) (74)
Pautas, et al. (2010) (28)
Cavallari, et al. (2011) (53)
Zhong, et al. (2011) (76)
Lund, et al. (2012) (82)
Biss, et al. (2012) (83)
Finkelman, et al. (2015) (88)
	High

	Clinical
	With empiric warfarin dosing, individuals with VKORC1-1639G>A have less time in INR therapeutic range (TTR) early in the course of therapy.
	Supports statement: 
Wadelius, et al. (2009) (81)
Giansante, et al. (2012) (123)
Skov, et al. (2013) (89)

Does not support statement: 
Meckley, et al. (2008) (84)
Moreau, et al. (2012) (90)
	Moderate


	Clinical
	With empiric warfarin dosing, VKORC1-1639G>A is associated with increased risk of over-anticoagulation (INR>4) in Caucasians and Asians but not in African Americans.
	Supports statement: 
Anderson, et al. (2007) (94)
Schelleman, et al. (2007) (119)
Meckley, et al. (2008) (84)
Limdi, et al. (2008) (78)
Schwarz, et al. (2008) (79)
Kim, et al. (2009) (86)
Limdi, et al. (2009) (73)
Wadelius, et al. (2009) (81)
Molden, et al. (2010) (95)
Pautas, et al. (2010) (28) 
Moon, et al. (2011) (96)
Lund, et al. (2012) (82)
Biss, et al. (2012) (83)
Yang, et al. (2013) (98)
Gaikwad, et al. (2013) (99)

Does not support statement: 
Ma, et al. (2012) (97)
	High



	Clinical
	With empiric warfarin dosing and INR monitoring, individuals with VKORC1-1639G>A are NOT at increased risk for major or minor bleeding event.
	Supports statement: 
Meckley, et al. (2008) (84)
Limdi, et al. (2008) (106)
Limdi, et al. (2009) (73)
Wadelius, et al. (2009) (81)
Esmerian, et al. (2011) (110)
Giansante, et al. (2012) (123)
Ma, et al. (2012) (97)
Yang, et al. (2013) (98)
Kawai, et al. (2014) (100)
An, et al. (2014) (111)
Roth, et al. (2014) (112)

Does not support statement: 
Lund, et al. (2012) (82)
Gaikwad, et al. (2013) (99)
Tomek, et al. (2013) (107)
Valentin, et al. (2014) (102)
	Moderate


	Clinical
	Multiple rare nonsynonymous SNPs in VKORC1 (V29L (rs104894539), D36Y (rs61742245), V45A (rs104894540), R58G (rs104894541), V66M (rs72547529), R98W (rs72547528), L128R (rs104894542)) confer warfarin resistance.
	Rost, et al. (2004) (7)
Harrington, et al. (2005) (124)
Bodin, et al. (2005) (125)
Harrington, et al. (2008) (126)
Scott, et al. (2008) (127)
Shahin, et al. (2011) (22) 
Kurnik, et al. (2012) (128)
	High




*Rating scheme described in the Supplemental Material

[bookmark: _Toc445803012][bookmark: _Toc467238959]Supplemental Table S3. Evidence linking CYP4F2 to warfarin phenotype
	Type of experimental model
	Major findings
	References
	Level of evidence

	Clinical
	CYP4F2 (rs2108622, V433M) variant allele is associated with a modest effect leading to higher warfarin dose in Europeans and Asians. 
	Supports Statement: 
Stec, et al. (2007) (129)
Caldwell, et al. (2008) (130)
McDonald, et al. (2009) (131)
Takeuchi, et al. (2009) (52)
Singh, et al. (2010) (132)
Cen, et al. (2010) (133)
Sagreiya, et al. (2010) (134)
Wells, et al. (2010) (135)
Perini, et al. (2010) (136)
Lubitz, et al. (2010) (137)
Cavallari, et al. (2010) (66)
Pautas, et al. (2010) (28)
Shahin, et al. (2011) (22)
Kringen, et al. (2011) (138) 
Liang, et al. (2012) (55)
Lee, et al. (2012) (57)
Pathare, et al. (2012) (58)
Bress, et al. (2012) (139)
Nakamura, et al. (2012) (140)
Liang, et al. (2012) (141)
Rusdiana, et al. (2013) (142)
Roth, et al. (2014) (112)
Wypasek, et al. (2014) (143)
Shendre, et al. (2016) (144)
	Moderate



[bookmark: _Toc445803013][bookmark: _Toc467238960]Supplemental Table S4.  Evidence comparing pharmacogenetics warfarin dosing algorithms to standard of care dosing* or clinical algorithms
	Type of experimental model
	Major Findings
	Reference
	Level of Evidence

	Pharmacogenetics dosing algorithm vs standard of care dosing*

	Clinical
	More accurate prediction of dose 
	Anderson, et al. (2007) (145)
IWPC, et al. (2009) (146)
	High

	Clinical
	Shorter time to stable dose with pharmacogenetics algorithm
	Huang, et al. (2009) (147)
Borgman, et al. (2012) (148)
Wang, et al. (2012) (149)
Pirmohamed, et al. (2013) (14)
	High


	Clinical
	Improved percent of time in therapeutic range (TTR)  with pharmacogenetics algorithm

	Huang et al. (2009) (147)
Borgman, et al. (2012) (148)
Anderson, et al. (2012) (150)
Pirmohamed, et al. (2013) (14)

Does not support statement: 
Anderson, et al. (2007) (145)
	High



	Clinical
	Reduced number of times with INR >4 with pharmacogenetics algorithm
	Anderson, et al. (2012) (150)
Pirmohamed, et al. (2013) (14)

Does not support statement: 
Anderson, et al. (2007) (145)
McMillin, et al. (2010) (74)
Borgman, et al. (2012) (148)
	High


	Clinical
	Reduced number of times with INR <1.5 with pharmacogenetics algorithm
	Anderson, et al. (2012) (150)
	Moderate


	Clinical
	Dosing with a pharmacogenetics algorithm does not reduce bleeding risk
	McMillin, et al. (2010) (74)
Pirmohamed, et al. (2013) (14)

Does not support statement: 
Anderson, et al. (2012) (150)
	Weak


	Pharmacogenetics dosing algorithm including CYP2C9*2, *3 and VKORC1  vs clinical algorithm 

	Clinical
	More accurate dose prediction in non-blacks
	Lenzini, et al. (2008) (151)
IWPC, et al. (2009) (146)
Burmester, et al. (2011) (152)
Kimmel, et al. (2013) (153)
	High


	Clinical
	Does not more accurately predict dose in blacks
	Kimmel, et al. (2013) (153)
	High


	Clinical
	Does not improve time to stable dose
	Burmester, et al. (2011) (152)
Kimmel, et al. (2013) (153)
Jonas, et al. (2013) (154)
	High

	Clinical
	Does not improve percent of time in therapeutic range (TTR)

	Burmester, et al. (2011) (152)
Jonas, et al. (2013) (154)
Kimmel, et al. (2013) (153)

Does not support statement: 
Lenzini, et al. (2008) (151)
	High


	Clinical
	Does not reduce number of times with INR >4
	Burmester, et al. (2011) (152)
Kimmel, et al. (2013) (153)
Jonas, et al. (2013) (154)
	High


	Clinical
	Does not reduce percentage of time below therapeutic range (INR<2)
	Kimmel, et al. (2013) (153)
	High


	Clinical
	Does not decrease bleeding risk
	Lenzini, et al. (2008) (151)
Kimmel, et al. (2013) (153)
Jonas, et al. (2013) (154)
	Weak



Standard of care*: Standard of care for warfarin dosing is not same in all studies but is the standard of care relative to protocols incorporating genetic factors and/or clinical factors into the dosing consideration. It is usually a fixed initial dose (with our without a loading regimen), followed by dose modification according to results of the International Normalized Ratio (INR) or prothrombin time (PT) until a stable warfarin maintenance dose is achieved.
Note: Clinical utility studies not including VKORC1 variant information are excluded from the analysis (Hillman 2005, Caraco 2008). 

[bookmark: _Toc467238961]Supplemental Table S5.  Primary pharmacogenetic Warfarin Dosing Algorithms Used in Prospective Clinical Trials
	Algorithm (ref)
	Prospective clinical trial utilizing algorithm (ref)
	Notes

	IWPC (12)
	COUMAGEN-II (150)
	Modified version to accommodate different INR targets and smoking status

	
	EU-PACT (14)
	Modified version used to calculate maintenance dose

	Gage, et al. (13)
	COAG (153)
	Used for first 3 days of warfarin therapy

	
	GIFT
	Not yet reported

	Avery, et al. (155)
	EU-PACT  (14)
	Modified version to account for CYP2C9 allelic variants on the pharmacokinetics of warfarin was used to calculate loading dose for days 1-3 therapy

	Lenzini, et al. (15)
	COAG (153)
	Used to determine dose revision on day 4, 5, or both of therapy

	
	EU-PACT (14)
	Modified version (by removing diabetes, African origin, stroke, and fluvastatin use) used to determine dose revision on days 4-5 therapy based on the INR value on day 4.




[bookmark: _Toc445803014][bookmark: _Toc467238962]Supplemental Table S6. Additional findings with weak/moderate evidence linking other genes/variants to warfarin phenotype (not part of recommendation)
	Type of experimental model
	Major findings
	References

	In vitro
	CYP2C9*12 allele is associated decreased enzyme activity.
	O’Brien, et al. (2013) (156)

	Clinical
	CYP2C9 *1/*57 is associated with hyper sensitivity to coumarin anticoagulants with multiple bleeding episodes and supra-elevated International Normalized Ratios.
	Nahar, et al. (2013) (157)

	Clinical
	CYP2C9 rs17847036 GG genotype is associated with low dosage requirements in Indonesians
	Suriapranata, et al. (2011) (122)

	Clinical
	Chinese patients carrying the CYP2C9 rs1057910AA genotype need higher warfarin doses.
	Liang, et al. (2013) (158)

	Clinical
	VKORC1-8191 (rs61162043) variant is associated with higher warfarin dose in African Americans.
	Perera, et al. (2011) (114)


	Clinical 


	The VKORC1 rs17886199 A-allele is associated with lower warfarin dose in African Americans, independent of the VKORC1 1173C>T and CYP2C9*2 and *3 variants. 
	Schelleman, et al. (2010) (159)

	Clinical
	CYP4F2 rs2189784 (but not rs2108622) is associated with time-to-therapeutic international normalized ratio.
	Zhang, et al. (2009) (160)

	Clinical
	Variant rs339097 in CALU predicts higher warfarin dose in African Americans populations.
	Voora, et al. (2010) (21)
Shahin, et al. (2011) (22)

	Clinical
	Variant rs1043550 in CALU does not predict higher warfarin dose in Caucasians. 
	Glurich, et al. (2013) (161)

	Clinical
	rs11676382 in GGCX was shown to be a significant was associated with a reduction in warfarin dose.  
	Rieder, et al. (2007) (26)
King, et al. (2010) (11)
Wypasek, et al. (2014) (143)
Sun, et al. (2015) (162)

	Clinical
	[bookmark: _GoBack]rs12714145/rs7568458 in GGCX is not associated with warfarin dose.
	Supports statement:
Cha, et al. (2007) (29)
Wadelius, et al. (2007) (20)
Wadelius, et al. (2009) (81)
Pautas, et al. (2010) (28)
King, et al. (2010) (11)

Does not support statement:
Huang, et al. (2011) (163)

	Clinical
	Chinese patients carrying the CYP2C19 rs3814637CC or GGCX rs699664AA genotype need higher warfarin doses.
	Liang, et al. (2013) (158)

	Clinical
	Apolipoprotein E genotype is associated with duration of time to reach a stable warfarin dose in African-American patients.   
	Shahin, et al. (2011) (22)
Cavallari, et al. (2011) (164)

	Clinical
	NQO1*2 (rs1800566) and CYP4F2 V433M alleles are associated with higher therapeutic warfarin dose requirements in Hispanic-Americans, but not African-Americans.
	Bress, et al. (2012) (139)


	Clinical 
	GATA4 regulates CYP2C9 expression. GATA4 SNPs (rs2645400 and rs4841588) are predictive of stable warfarin dose.
	Jeong, et al. (2015) (165) 



[bookmark: _Toc467238963]Supplemental Table S7. Evidence Linking CYP2C9, VKORC1, and CYP4F2 to warfarin phenotype in pediatric patients
	Type of experimental model
	Major findings
	References
	Level of evidence

	Clinical 
	Children with CYP2C9*2 and CYP2C9*3 have reduced warfarin maintenance dose.
	Supports statement:
Nowak-Gottl, et al. (2010) (166) 
Biss, et al. (2012) (83) 
Moreau, et al. (2012) (90) 
Shaw, et al. (2014) (167) 
Hamberg, et al. (2014) (168) 
Hawcutt, et al. (2014) (169) 
Dilge Taskin, et al. (2016) (170) 

Does not support statement:
Nguyen, et al. (2013) (171) 
Kamal El-Din, et al. (2014) (172) 
	High


	Clinical
	With empiric warfarin dosing, children with CYP2C9*2 and CYP2C9*3 are at increased risk of over-anticoagulation. 
	Biss, et al. (2013) (173) 
Shaw, et al. (2014) (167) 
Hawcutt, et al. (2014) (169) 
	Moderate

	Clinical 
	With empiric warfarin dosing, children with CYP2C9*3 are at increased risk of bleeding.
	Shaw, et al. (2014) (167) 

	Moderate 


	Clinical
	VKORC1-1639G>A variant (and SNPs in high linkage disequilibrium with it) is associated with reduced warfarin maintenance dose in children. 
	Supports statement:
Nowak-Gottl, et al. (2010) (166) 
Kato, et al. (2011) (174) 
Biss, et al. (2012) (83) 
Moreau, et al. (2012) (90) 
Nguyen, et al. (2013) (171) 
Hawcutt, et al. (2014) (169)
Shaw, et al. (2014) (167) 
Hamberg, et al. (2014) (168) 
Wakamiya, et al (2016) (175)
Dilge Taskin, et al (2016) (170)

Does not support statement: 
Hirai, et al. (2013) (176)
Kamal El-Din, et al. (2014) (172) 
	High

	Clinical
	With empiric warfarin dosing, children with VKORC1-1639G>A are likely to require shorter time to achieve first INR in therapeutic range. 
	Shaw, et al. (2014) (167) 
	Moderate

	Clinical
	With empiric warfarin dosing, children with VKORC1-1639G>A have more time in INR therapeutic range (TTR).
	Hawcutt, et al. (2014) (169) 
	Weak

	Clinical
	With empiric warfarin dosing, VKORC1-1639G>A is associated with increased risk of over-anticoagulation (INR > 4 or INR exceeding target range) in children.  
	Biss, et al. (2013) (173) 
Shaw, et al. (2014) (167)   
Hawcutt, et al. (2014) (169) (p=0.02, but not statistically significant after FDR adjustment)
	High

	Clinical
	CYP4F2 (rs2108622, V433M) variant allele is associated with a modest effect leading to higher warfarin dose in children.
	Supports statement:
Hirai, et al. (2013) (176)  

Does not support statement: 
Biss, et al. (2012) (83)  
Hamberg, et al. (2014) (168) 
Wakamiya, et al. (2016) (175)
	Weak
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