
CYP2C9 Genotyping Recommendations: AMP Pharmacogenomics Working Group AMP Clinical Practice Committee

V.M. Pratt, Ph.D., FACMG

Director, Pharmacogenomics and Molecular Genetics Laboratories Indiana University School of Medicine

AMP President

Expertise that advances patient care through education, innovation, and advocacy.

AMP PGx Working Group

Recommendations for Clinical Pharmacogenetic Testing: Defining a Minimum Set of Variants that should be included in Genotyping assays

- Victoria M. Pratt (Chair), Indiana University
- Lari Cavallari, University of Florida
- Andria L. Del Tredici, Millennium Health
- Houda Hachad, Translational Software
- Yuan Ji, Department of Pathology and ARUP Laboratories, University of Utah School of Medicine
- Lisa V. Kalman, Division of Laboratory Systems, Centers for Disease Control and Prevention
- Reynold Ly, Indiana University, junior member
- Ann Moyer, CAP representative
- Stuart A. Scott, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai and Sema4
- Michelle Whirl-Carrillo, CPIC/PharmGKB representative
- Karen E. Weck, Departments of Pathology and Laboratory Medicine and Genetics, University of North Carolina

Why a "Must-Test" List?

- NHGRI Genomic Medicine X: Research Directions in Pharmacogenomics Implementation
 - Call for assay standardization
- Recent GeT-RM paper (Pratt et al., 2016), no 2 PGx assays tested same variants.
- Standardization of testing

- Similar to CFTR testing

- Allele function derived from *in vitro* models may not directly translate to a clinical phenotype
- Allele function can be substrate and/or drug concentration dependent.

Why NOT a "Must-Test" List?

- High throughput DNA sequencing has become more common
 - PGx genes have many pseudogenes
- May quickly lose relevance
 - AMP PGx Working Group plans to periodically reassess

Defining a "Must-Test" List

GOAL #1: define the key attributes of PGx alleles recommended for clinical testing

- Needed to develop a framework for evaluation
 - Functional status
 - Multiethnic allele frequencies
 - Availability of reference materials
 - Commercially available genotyping platforms
- Started with CYP2C19
- Other PGx genes with clinical relevance planned

Defining a "Must-Test" List

GOAL #2: define a minimum set of variants that should be included in clinical PGx genotyping assays

- Development process
 - Review of available literature and testing resources
 - Identification of available reference materials
 - Review of clinical testing currently being offered
 - Review of available quality programs
 - Identification of heterogeneity / gaps in practice
 - Discussion
 - Expert consensus recommendation/opinion development

AMP PGx Working Group Proposed system

• Tier 1

- Minimum "must-test" set
- Well-characterized alteration of activity that has been shown to have an effect on drug response and for which the functional variant is known
- Appreciable (\geq 1%) minor allele frequency in a population
- Available reference materials

• Tier 2

- Extended panel
- Meet at least 1 but, not all of the criteria for inclusion in Tier 1

AMP PGx Working Group

• First deliverable: consensus expert opinion recommendations for clinical *CYP2C19* testing

Article in Press

Recommendations for Clinical CYP2C19 Genotyping Allele Selection: A Report of the Association for Molecular Pathology

```
Victoria M. Pratter M., Andria L. Del Tredici, Houda Hachad, Yuan Ji, Lisa V. Kalman, Stuart A. Scott, Karen <u>E. Weck</u>
```

✤ PlumX Metrics

DOI: https://doi.org/10.1016/j.jmoldx.2018.01.011

AMP PGx Working Group Proposed system

• Tier 1

- Minimum "must-test" set
- Well-characterized alteration of activity that has been shown to have an effect on drug response and for which the functional variant is known
- Appreciable (\geq 1%) minor allele frequency in a patient population
- Available reference materials

• Tier 2

- Extended panel
- Meet at least 1 but, not all of the criteria for inclusion in Tier 1

Other

–Variants with unknown or uncertain function are not recommended for inclusion in clinical test panels

AMP PGx Working Group

• 2nd deliverable: consensus expert opinion recommendations for clinical *CYP2C9* testing

< Previous Article	September 2019 Vo	olume 21, Issu	ie 5, Pages 746–75	5 Next Article >				
Recommendations for Clinical <i>CYP2C9</i> Genotyping Allele Selection								
A Joint Recommenda Pathologists	ation of the Association fo	r Molecular F	Pathology and Col	lege of American				
<u>Victoria M. Pratt</u> ⊷t.∗ <u>Moyer</u> ••••, <u>Stuart A. Sco</u>	<mark>ᢂ, Larisa H. Cavallari</mark> *‡, <u>A</u> ott ^{∗,††,‡‡} , <u>Michelle Whirl-Carr</u>	ndria L. Del Ti illo* ^{s§} , <u>Karen I</u>	r <u>edici</u> *.§, <u>Houda Hac</u> E. Weck* [™]	<u>:had</u> ∗¶, <u>Yuan Ji</u> ∗ग, <u>Ann M.</u>				
💑 PlumX Metrics								
DOI: https://doi.org/10.10)16/j.jmoldx.2019.04.003	Check	for updates	👭 f y 🛛 🛨				

Official Journal of the Association for Molecular Pathology

ine

TUILUU

olecular Diagnostics

Association For Molecular Pathology

CYP2C9 Medications FDA labeling

Generic Name	Trade Name (s)	Label Date	Link to FDA Label			
Celecoxib	Celebrex	5/9/2016	https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/020998s048lbl.pdf			
Dronabinol	Marinol	8/28/2017	https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/018651s029lbl.pdf			
Flurbiprofen	Ansaid	5/9/2016	https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/018766s020lbl.pdf			
Fosphenytoin	Cerebyx	10/31/2017	https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/020450s037s038lbl.pdf			
Lesinurad	Zurampic	12/22/2015	https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/207988lbl.pdf			
Dhonutoin	Dilantin		https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/084349s081s082s084lbl			
Phenytoin		12/22/2017	.pdf			
Piroxicam	Feldene	5/9/2016	https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/018147s044lbl.pdf			
Warfarin	Coumadin	8/14/2017	https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/009218s118lbl.pdf			

AMP Guidelines for CYP2C9 clinical testing – Tier 1

Allele	Allele Functional Status†	Defining Functional Variant	HGVS Nomenclature: NM_000771.3	HGVS Nomenclature: NG_008385.1§	Reference Material Available	Multiethnic Allele Frequency
*2¶	Decreased function	rs1799853	c.430C>T, p.Arg144Cys	g.8633C>T	Yes	0-12%
*3‡	Decreased function	rs1057910	c.1075A>C, p.lle359Leu	g.47639A>C	Yes	1-11%
*5	Decreased function	rs28371686	c.1080C>G, p.Asp360Glu	g.47644C>G	Yes	0-1%
*6	No function	rs9332131	c.818del, p.Lys273Argfs*34	g.15625delA	Yes	0-1%
*8	Decreased function	rs7900194	c.449G>A, p.Arg150His	g.8652G>A	Yes	0-1%
*11	Decreased function	rs28371685	c.1003C>T, p.Arg335Trp	g.47567C>T	Yes	0-2%

† Citations for assignment of function can be found at https://www.pharmvar.org/gene/CYP2C9, last accessed 8/15/2018 [§] CYP2C9 RefSeqGene; ¶ Note that the defining variant of the *35 allele (c.374G>T, p.Arg125Leu) is likely in linkage disequilibrium with the defining *2 variant (c.430C>T, p.Arg144Cys)). ‡ Note that the defining *18 variant of the allele (c.1190A>C, p.Asp397Ala, rs72558193) is likely in linkage disequilibrium with the defining variant of *3 variant (c.1075A>C, p.Ile359Leu, rs1057910)

African ancestry alleles

- *5, *6, *8, *11
- Increases detection by 10%
- WG felt important to include

CYP2C9 Allele	African	Other	Latino	South Asian	European	East Asian	Finnish
*2	2.354000%	9.471000%	6.600000%	4.603000%	12.680000%	0.034790%	11.700000%
*3	1.259000%	6.608000%	3.580000%	11.310000%	6.882000%	3.379000%	5.633000%
*5	1.268000%	0.220300%	0.034860%	0.000000%	0.004497%	0.000000%	0.000000%
*6	1.049000%	0.000000%	0.035090%	0.000000%	0.003010%	0.000000%	0.000000%
*8	5.603000%	0.000000%	0.216900%	0.060560%	0.025470%	0.011590%	0.000000%
*11	2.143000%	0.330400%	0.156700%	0.193800%	0.218800%	0.011570%	0.544500%

AMP Guidelines for CYP2C9 clinical testing -Tier 2

Allele	Allele Functional Status†	Defining Functional Variant	HGVS Nomenclature: NM_000771.3	HGVS Nomenclature: NG_008385.1§	Reference Material Available	Multiethnic Allele Frequency
			c.1465C>T,			
*12	Decreased function	rs9332239	p.Pro489Ser	g.55363C>T	Yes	0-0.3%
			c.269T>C,			
*13	Decreased function	rs72558187	p.Leu90Pro	g.8301T>C	No	0-0.2%
			c.485C>A,			
15	No function	rs72558190	p.Ser162	g.14125C>A	No	0-0.01%

§ CYP2C9 RefSeqGene; forward relative to chromosome), † https://www.pharmvar.org/gene/CYP2C9, last accessed 8/15/2018

CYP2C9: one of the most tested PGx genes

- >50 laboratories listed in Genetic Testing Registry https://www.ncbi.nlm.nih.gov/gtr/
- Large variation in allele selection of LDPs across labs (targeted genotyping, full sequencing, <u>+</u> deletion/duplication analysis)
- Large variation in commercial PGx genotyping platforms
- The majority of LDPs/tests currently do not include all the Tier 1 alleles, indicating that these recommendations may be more difficult to implement

	Affymetrix PharmacoScan (RUO)†	Agena Biosciences iPLEX ADME (RUO)‡	Autogenomics INFINITI§ (CE-marked)	GenMark eSensor (FDA-cleared) [¶]	BioFire Defense analyte-specific reagents)	Thermo Fisher OpenArray (V, RUO)†	TrimGen (FDA-cleared)
CYP2C9 Alleles	*2, *3, *4, *5, *5, *8, *9, *10, *11, *13, *15, *16, *17, *18, *19, *20, *21, *23, *24, *25, *26, *29, *30, *31, *32, *34, *36, *37, *38, *39, *40, *42, *43, *44, *45, *46, *47, *48, *49, *50, *51, *52, *53, *54, *55, *56, *57, *58	*1B, *1C, *1D, *2, *2C *3A, *3B,*4, *5, *5, *8, *9, *10, *11A, *11B, *13, *15, *16, *17, *18, *19, *20, *21, *22, *23, *24, *25, *26, *27, *28, *29, *30, *31, *32, *33, *34	*2, *3, *4, *5, *6, *11	*2, *3	*2, *3	variable	*2, *3

AMP PGx Working Group Summary Genotyping Recommendations

These recommendations are intended to

- Inform clinical laboratory professionals when designing and validating clinical PGx assays
- Promote standardization of PGx testing across different laboratories
- Complement other clinical guidelines, such as those issued by the Clinical Pharmacogenetic implementation consortium (CPIC)
 - which primarily focus on the interpretation of genotyping results and therapeutic recommendations for specific drugs

We want to hear from you!

- Does the proposed two tier system
 - Account for established /establishment of clinical utility?
 - Reflect appropriate clinical implementation of PGx testing given current knowledge?
 - Flexibility for testing in a variety of practice settings?
 - Place appropriate emphasis on reference material availability?
- Other alleles that should be included?
- Do you agree with the current tier assignments for the listed alleles? If not, why not?

A Special Thanks

- AMP Clinical Practice Committee
- Mrudula Pullambhatla
- Robyn Temple-Smolkin

