

CPIC Update

Kelly E. Caudle, Pharm.D., Ph.D.

- As of October 2019:
 - >385 Members
 - Clinicians and scientists
 - 292 institutions
 - 35 countries
 - 14 Observers (NIH, FDA, professional societies)
 - CPIC Informatics
 - >35 members from 25 organizations

<u>2011</u>

- TPMT thiopurines
- CYP2C19- clopidogrel
- CYP2C9, VKORC1 warfarin

<u>2012</u>

- CYP2D6 codeine
- HLA-B abacavir
- SLCO1B1 simvastatin

<u>2013</u>

- HLA-B allopurinol
- CYP2D6, CYP2C19-TCAs
- *HLA-B* carbamazepine
- DPYD -- 5FU / capecitabine
- TPMT thiopurines—UPDATE
- CYP2C19 clopidogrel--UPDATE

https://cpicpgx.org/guidelines/

<u>2014</u>

- *IL28B* -- PEG interferon α
- CFTR -- Ivacaftor
- G6PD -- Rasburicase
- CYP2C9, HLA-B -- Phenytoin
- CYP2D6 codeine--UPDATE
- HLA-B abacavir--UPDATE
- SLCO1B1 simvastatin—UPDATE

<u>2015</u>

- CYP3A5 tacrolimus
- CYP2D6, CYP2C19-SSRIs
- UGT1A1 atazanavir
- HLA-B allopurinol-UPDATE

<u>2016</u>

- CYP2C19 voriconazole
- CYP2D6 ondansetron
- *CYP2C9, VKORC*1 warfarin--UPDATE
- CYP2D6, CYP2C19 TCAs--UPDATE

<u>2017</u>

- CYP2D6 tamoxifen
- HLA-B carbamazepine—UPDATE
- DPYD -- 5FU / capecitabine-

UPDATE

<u>2018</u>

- RYR1/CACNA1S- inhaled anesthetics
- TPMT/NUDT15 thiopurines— UPDATE

2019 (in progress included)

- CYP2B6—efavirenz-published
- CYP2D6—atomoxetine-published
- CYP2C19/PPI
- CYP2C9/HLA-phenytoin—UPDATE
- CYP2C9/NSAIDS
- CYP2D6/codeine-UPDATE (to include other opioids)
- CYP2C19/clopidogrel-UPDATE
- *mtRNR1*/aminoglycosides

23 guidelines; 20 genes and 46 drugs

- TPMT, NUDT15
 - MP, TG, azathioprine
- CYP2D6
 - Codeine, tramadol, hydrocodone, oxycodone, TCAs, tamoxifen, SSRIs, ondansetron, tropisetron, atomoxetine
- CYP2C19
 - TCAs, clopidogrel, voriconazole, SSRIs, PPIs (in progress)
- VKORC1
 - Warfarin
- CYP2C9
 - Warfarin, phenytoin, NSAIDs (in progress)
- CYP4F2
 - Warfarin
- HLA-B
 - --Allopurinol, CBZ, Oxcarbazepine, abacavir, phenytoin
- HLA-A
 - CBZ

https://cpicpgx.org/guidelines/

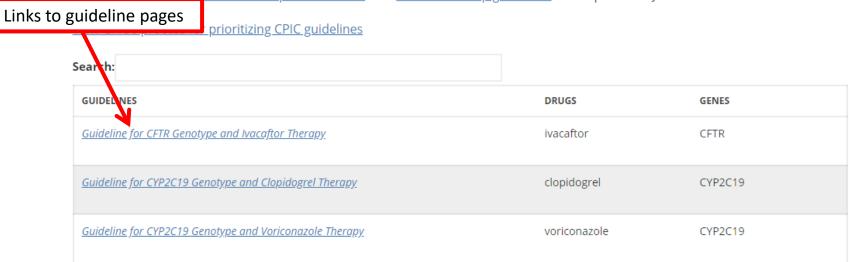
- CFTR
 - -- Ivacaftor
- DPYD
 - 5FU, capecitabine, tegafur
- G6PD
 - Rasburicase
- UGT1A1
 - Atazanavir
- SLC01B1
 - Simvastatin
- IFNL3 (IL28B)
 - Interferon
- CYP3A5
 - Tacrolimus
- CYP2B6
 - Efavirenz
- RYR1, CACNA1S
 - Inhaled anesthetics
- mRNR1 (in progress)
 - aminoglycosides

Prioritization of CPIC Guidelines

Prioritizing the order of writing guidelines for CPIC genes/drugs is based on the following criteria:

- Is there prescribing actionability?
- What is the severity of the clinical consequences (adverse effects, lack of response) if genetics are not used to inform prescribing?
- Is the gene already subject to other CPIC guidelines?
- Is there an available genetic test for that gene?
- How commonly used are the affected drugs?
- How common are the high-risk genetic variants?
- Is there mention of genetic testing in drug labelling?
- Are there pharmacogenetically-based prescribing recommendations from professional organizations or others?

CPIC guidelines published, in progress, or planned


Gene – Drug	Current CPIC level*	Status
<i>TPMT, NUDT15</i> – thiopurines	A	<u>Published</u>
CYP2C19 – clopidogrel	А	<u>Published</u> ; update in progress
CYP2C9,VKORC1, CYP4F2 – warfarin	А	Published
CYP2D6 – codeine	А	<u>Published</u> ; update in progress

CPIC Guidelines Genes-Drugs Alleles Publications Meetings Resources Informatics Members Contact

Guidelines

CPIC guidelines are designed to help clinicians understand HOW available genetic test results should be used to optimize drug therapy, rather than WHETHER tests should be ordered. A key assumption underlying the CPIC guidelines is that clinical high-throughput and pre-emptive (pre-prescription) genotyping will become more widespread, and that clinicians will be faced with having patients' genotypes available even if they have not explicitly ordered a test with a specific drug in mind. CPIC's guidelines, processes and projects have been endorsed by several professional societies – <u>read more</u>.

Each CPIC guideline adheres to a standard format, and includes a standard system for <u>grading levels of evidence linking genotypes to</u> <u>phenotypes</u>, how to assign phenotypes to clinical genotypes, prescribing recommendations based on genotype/phenotype, and a standard system for assigning <u>strength to each prescribing recommendation</u>. The SOP for guideline creation has been published in Current Drug Metabolism: <u>Incorporation of Pharmacogenomics into Routine Clinical Practice: The Pharmacogenetics Implementation</u> <u>Consortium (CPIC) Guideline Development Process</u>. The <u>CPIC authorship guidelines</u> were updated in June 2014.

CPIC[®] Guideline for Voriconazole and CYP2C19

Most Recent Guideline Publication

🖌 СЫС

Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for *CYP2C19* and Voriconazole Therapy (December 2016)

Updates since publication: No updates on dosing recommendations since publication.

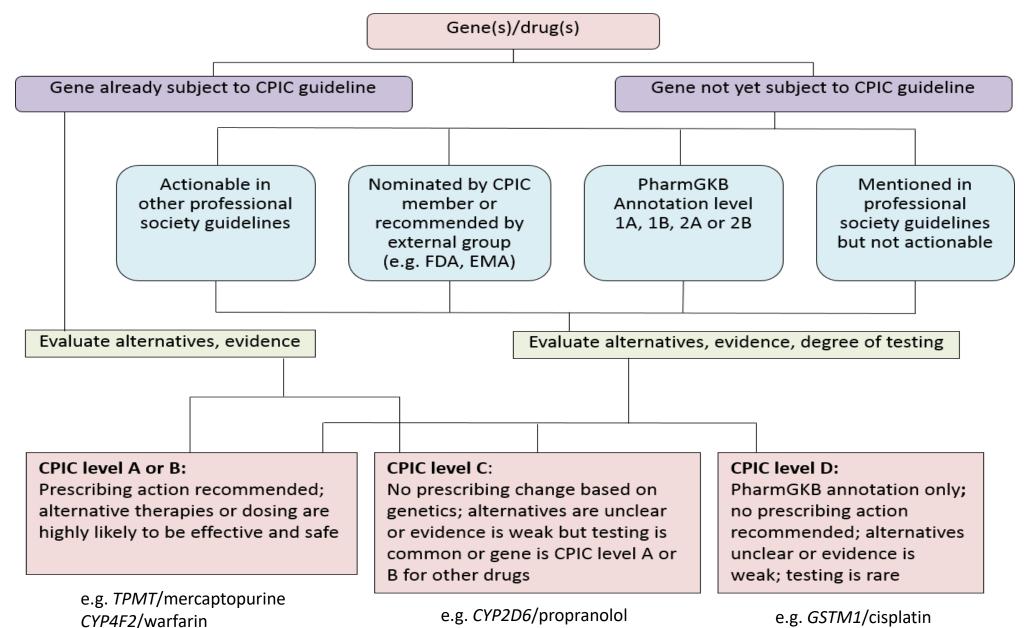
Tables provided in the main manuscript of the guideline

Table 1. Assignment of likely CYP2C29 phenotype based on genotypes

Table 2. Dosing recommendations for voriconazole based on CYP2C19 phenotype for adult patients

Table 3. Dosing recommendations for voriconazole based on CYP2C19 phenotype for pediatric patients (children and adolescents <18 years old)

Supplement to: Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2C19 and Voriconazole Therapy (December 2016)


Tables provided in the guideline publication supplement or referenced in the guideline^a

Levels of Evidence Linking Genotype to Phenotype

CYP2C19 Allele Definition Table 🖈

CYP2C19 Allele Functionality Table 🖈

CPIC assigns actionability levels to gene/drug pairs

Genes-Drugs

> 52,000 hits/year

Ē

CPIC assigns CPIC levels to genes/drugs with (1) <u>PharmGKB Clinical Annotation Levels of Evidence</u> of 1A, 1B, 2A and 2B, or (2) a <u>PharmGKB PGx level</u> for FDA-approved drug labels of "actionable pgx", "genetic testing recommended", or "genetic testing required", or (3) based on nomination to CPIC for consideration.

The levels (A, B, C, and D) assigned are subject to change; only those gene/drug pairs that have been the subject of guidelines have had sufficient in-depth review of evidence to provide definitive CPIC level assignments.

Note that only CPIC level A and B gene/drug pairs have sufficient evidence for at least one prescribing action to be <u>recommended</u>. CPIC level C and D gene/drug pairs are not considered to have adequate evidence or actionability to have prescribing recommendations.

- <u>View CPIC's process for assigning CPIC levels</u>
- View CPIC's levels for genes/drugs
- <u>View CPIC's process for prioritizing CPIC guidelines</u>

CPIC invites feedback on existing and planned gene/drug guidelines.

Download Table (CSV)

:	Search:							
	# (N=359)	GENE (UNIQUE = 127)	DRUG (UNIQUE = 226)	GUIDELINE	CPIC LEVEL	PHARMGKB LEVEL OF EVIDENCE	PGX ON FDA LABEL	CPIC PUBLICATIONS (PMID)

https://cpicpgx.org/genes-drugs/

Resources

Overview Presentation

This presentation describes CPIC, the underlying assumptions of CPIC guidelines, the guideline development process and how the guidelines can be implemented in a clinical setting. Deverview Presentation

A brief overview of CPIC can be found here.

Implementation

View a list of current implementers

CPIC users and media mentions

Term Standardization for Clinical Pharmacogenetic Test Results

Learn about CPIC's Term Standardization Project

Genotype to Phenotype Standardization Project

Learn about the CYP2D6 Genotype to Phenotype Project CPIC logo

CPIC Logo Graphics

Logo image files that you can use for referring to CPIC. The images are in <u>PNG</u> and <u>SVG</u> format.

- logo without full name
 - 🗟 200px width PNG
 - A00py width DNC

CPIC projects

CPIC slides

Implementation

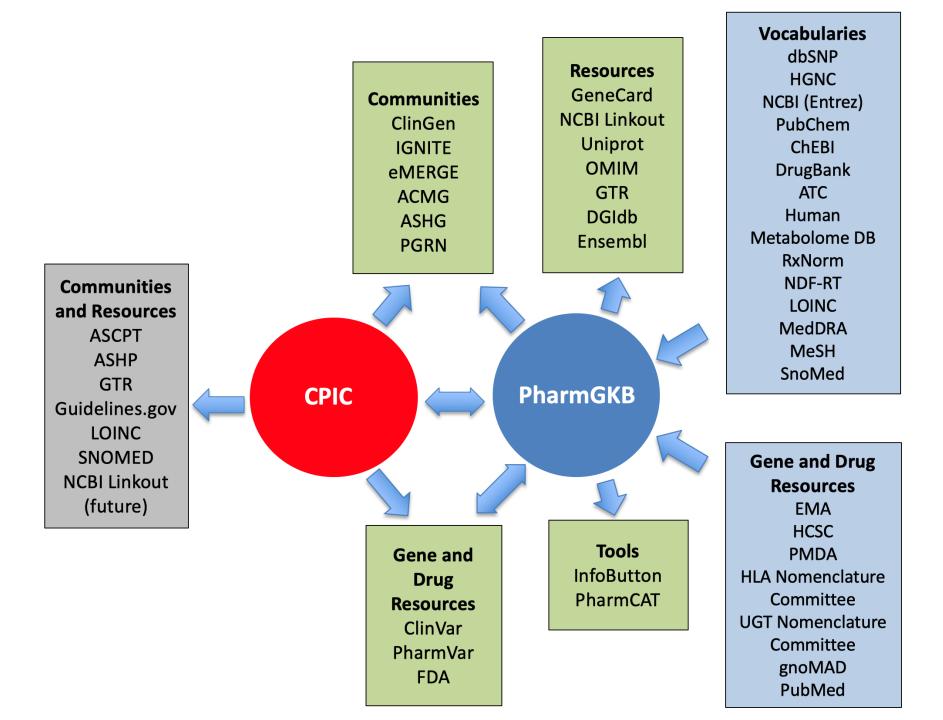
https://cpicpgx.org/implementation/

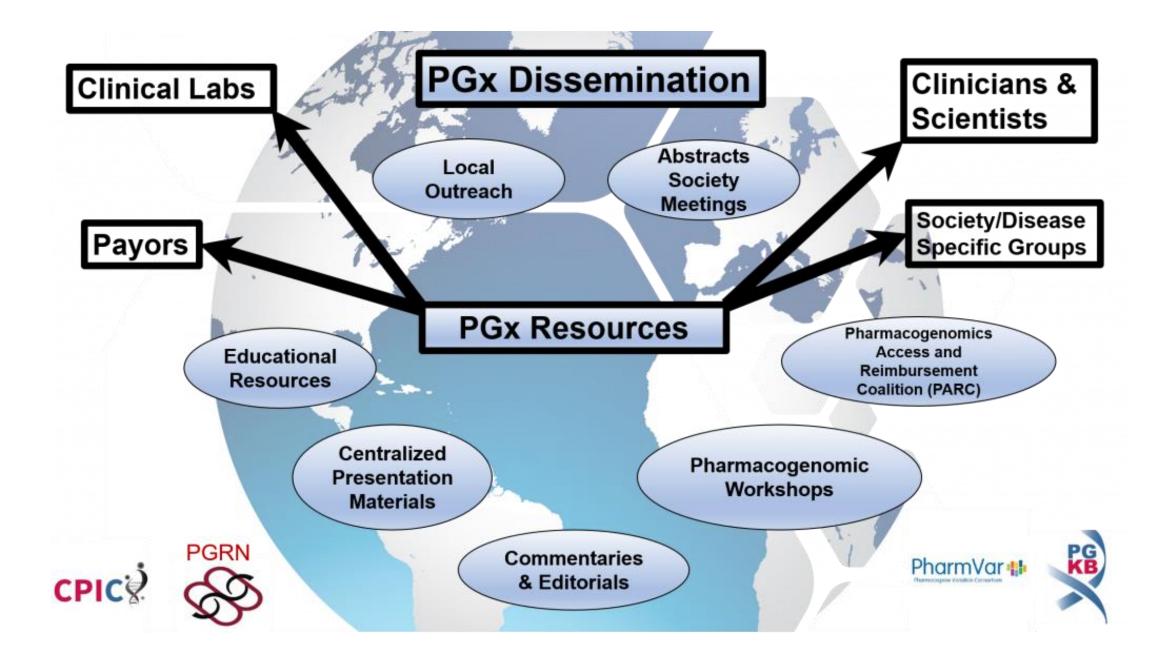
The following is a list of PGx implementers who are using CPIC guidelines as part of a program to facilitate use of genetic tests to guide prescribing for patients in clinical care settings:

Institution	Website and/or Contact (if available)
BJC Healthcare	
Boston Children's Hospital	Shannon Manzi; shannon.manzi@childrens.harvard.edu
Children's Minnesota	
Cincinnati Children's Hospital Medical Center	CCHMC Genetic Pharmacology Service
Clearview Cancer Institute	Emily K Pauli; emily.pauli@ccihsv.com
Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology	Matthias Schwab; matthias.schwab@ikp-stuttgart.de
Erasmus MC	Ron van Schaik; r.vanschaik@erasmusmc.nl
Geisinger Health System	Geisinger Health System Genomic Medicine Institute
Icahn School of Medicine at Mount Sinai	Stuart Scott lab
	Aniwaa Owusu Obeng; aniwaa.owusu-obeng@mssm.edu

Endorsements

CPIC guidelines and projects have been endorsed by several professional societies.


The Association for Molecular Pathology (<u>AMP</u>) has <u>endorsed</u> CPIC's <u>Term Standardization for Clinical Pharmacogenetics Test Results</u> <u>Project</u>.


The American Society for Clinical Pharmacology and Therapeutics (ASCPT) Board of Directors has endorsed CPIC guidelines.

The American Society of Health-System Pharmacists (<u>ASHP</u>) has <u>endorsed</u> multiple CPIC guidelines.

https://cpicpgx.org/endorsements/

"external" interactions

Phenotype ^a		Genotype	Examples of CYP2D6 diplotypes ^b	
Metabolizer	Activity score			
CYP2D6 ultrarapid metabolizer	> 2.0	An individual carrying duplications of functional alleles	*1/*1xN, *1/*2xN, *2/*2xN ^c	
CYP2D6 normal metabolizer	1.5 and 2.0	An individual carrying two normal function alleles or one normal func- tion and one decreased function allele	*1/*1, *1/*2, *1/*9, *1/*41, *2/*2	
CYP2D6 normal metabolizer or inter- mediate metabolizer (controversy remains) ^d	1.0	An individual carrying two decreased function alleles or one normal func- tion and one no function allele. An activity score (AS) of 1.0 is associ- ated with decreased tamoxifen metabolism to endoxifen compared to those with an AS of 1.5 or 2.	*1/*4, *1/*5, *41/*41	
CYP2D6 intermediate metabolizer	0.5	An individual carrying one decreased function and one no function allele	*4/*10,*4/*41, *5/*9	
CYP2D6 poor metabolizer	0	An individual carrying only no func- tional alleles	*3/*4,*4/*4, *5/*5, *5/*6	

Table 1 Assignment of likely CYP2D6 phenotypes based on genotypes

Clin Pharmacol Ther. 2018 May;103(5):770-777.

Table 2 Dosing recommendations for tamoxifen based on CYP2D6 phenotype

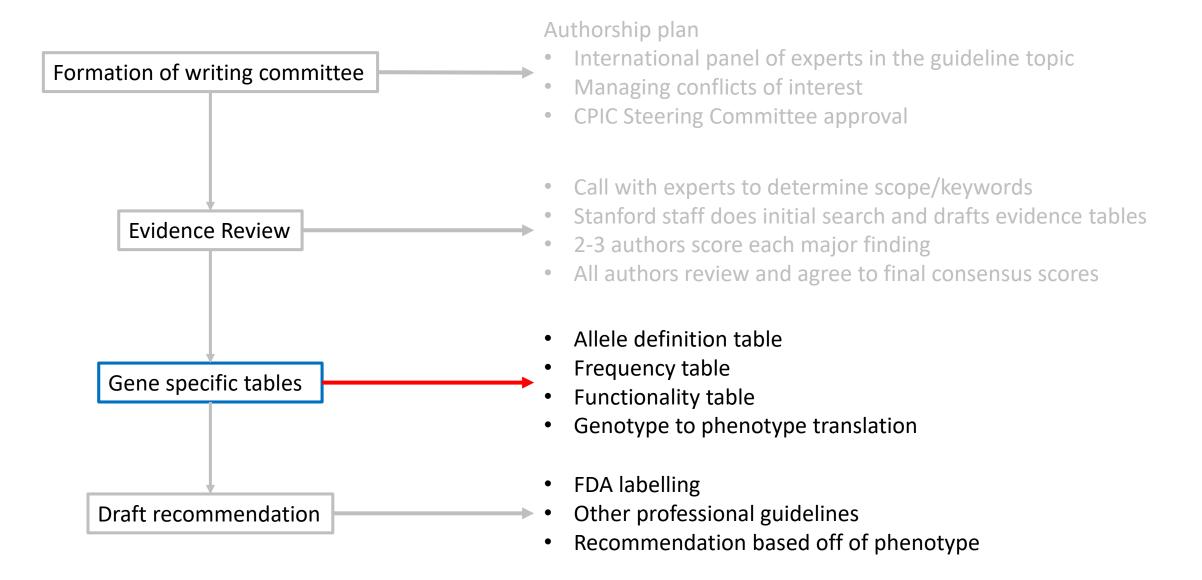
Phenotype		Implications	Therapeutic recommendation ^b	Classification of recommendation ^a
Metabolizer status	Activity score			
CYP2D6 ultrarapid metabolizer	>2.0	Therapeutic endoxifen concentrations	Avoid moderate and strong CYP2D6 inhibitors. Initiate therapy with rec- ommended standard of care dosing (tamoxifen 20 mg/day).	Strong
CYP2D6 normal metabolizer	1.5 to 2.0	Therapeutic endoxifen concentrations	Avoid moderate and strong CYP2D6 inhibitors. Initiate therapy with rec- ommended standard of care dosing (tamoxifen 20 mg/day).	Strong
CYP2D6 normal metabolizer or intermediate metabolizer (controversy remains) ^b	1.0 (no *10 allele present) ^b	Lower endoxifen concentrations com- pared to normal metabolizers; higher risk of breast cancer recurrence, event-free and recurrence-free survival compared to normal metabolizers.	Consider hormonal therapy such as an aromatase inhibitor for post- menopausal women or aromatase inhibitor along with ovarian function suppression in premenopausal women, given that these approaches are superior to tamoxifen regardless of <i>CYP2D6</i> genotype. ⁴³ If aroma- tase inhibitor use is contraindicated, consideration should be given to use a higher but FDA approved tamoxifen dose (40 mg/day). ⁴⁵ Avoid CYP2D6 strong to weak inhibitors.	Optional ^b
CYP2D6 normal metabolizer or intermediate metabolizer (controversy remains) ^b	1.0 (*10 allele present) ^b	Lower endoxifen concentrations com- pared to normal metabolizers; higher risk of breast cancer recurrence, event-free and recurrence-free survival compared to normal metabolizers.	Consider hormonal therapy such as an aromatase inhibitor for post- menopausal women or aromatase inhibitor along with ovarian function suppression in premenopausal women, given that these approaches are superior to tamoxifen regardless of <i>CYP2D6</i> genotype. ⁴³ If aroma- tase inhibitor use is contraindicated, consideration should be given to use a higher but FDA approved tamoxifen dose (40 mg/day). ⁴⁵ Avoid CYP2D6 strong to weak inhibitors.	Moderate ^b
CYP2D6 intermediate metabolizer	0.5	Lower endoxifen concentrations com- pared to normal metabolizers; higher risk of breast cancer recurrence, event-free and recurrence-free survival compared to normal metabolizers.	Consider hormonal therapy such as an aromatase inhibitor for post- menopausal women or aromatase inhibitor along with ovarian function suppression in premenopausal women, given that these approaches are superior to tamoxifen regardless of <i>CYP2D6</i> genotype. ⁴³ If aroma- tase inhibitor use is contraindicated, consideration should be given to use a higher but FDA approved tamoxifen dose (40 mg/day). ⁴⁵ Avoid CYP2D6 strong to weak inhibitors.	Moderate
CYP2D6 poor metabolizer	0	Lower endoxifen concentrations com- pared to normal metabolizers; higher risk of breast cancer recurrence, event-free and recurrence-free survival compared to normal metabolizers.	Recommend alternative hormonal therapy such as an aromatase inhibi- tor for postmenopausal women or aromatase inhibitor along with ovar- ian function suppression in premenopausal women given that these approaches are superior to tamoxifen regardless of <i>CYP2D6</i> geno- type ⁴³ and based on knowledge that <i>CYP2D6</i> poor metabolizers switched from tamoxifen to anastrozole do not have an increased risk of recurrence. ³⁸ Note, higher dose tamoxifen (40 mg/day) increases but does not normalize endoxifen concentrations and can be consid- ered if there are contraindications to aromatase inhibitor therapy. ^{45,56}	Strong

Clin Pharmacol Ther. 2018 May;103(5):770-777.

CYP2D6 Genotype to Phenotype Standardization Project

Since pharmacogenetic clinical recommendations are based on phenotype, the assignment of phenotype based on genotype is an important aspect to clinical implementation and reporting of different inferred phenotypes across laboratories and guidelines has created considerable confusion and inconsistencies in recommendations. To maximize the utility of pharmacogenetic test results, it is desirable to standardize the phenotype prediction from genotype data. The purpose of this project was to determine consensus among CYP2D6 experts as to the definitions used to assign CYP2D6 phenotype based on genotype.

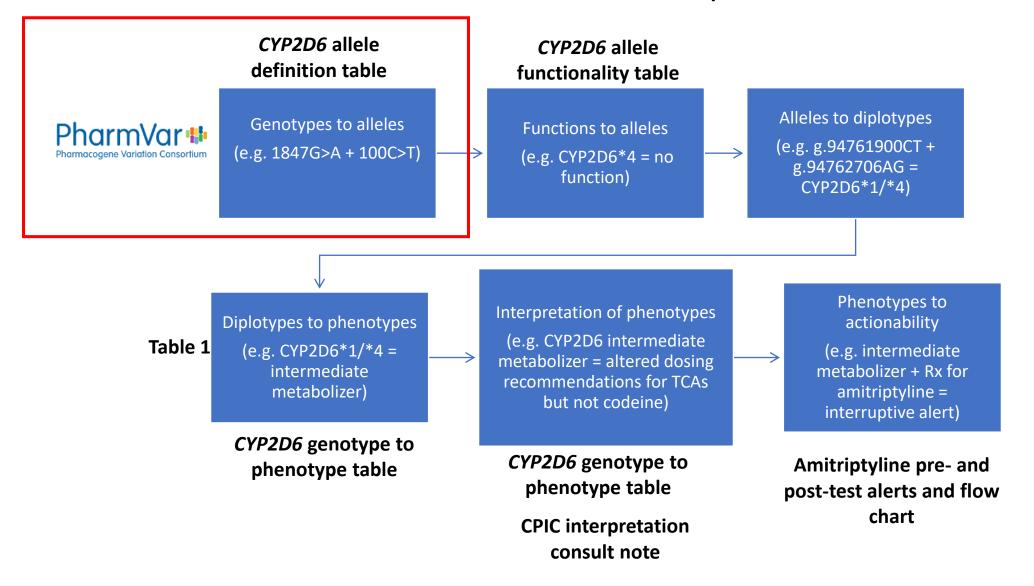
<u>Final Consensus CYP2D6 genotype to phenotype table_final_Mar2019</u>

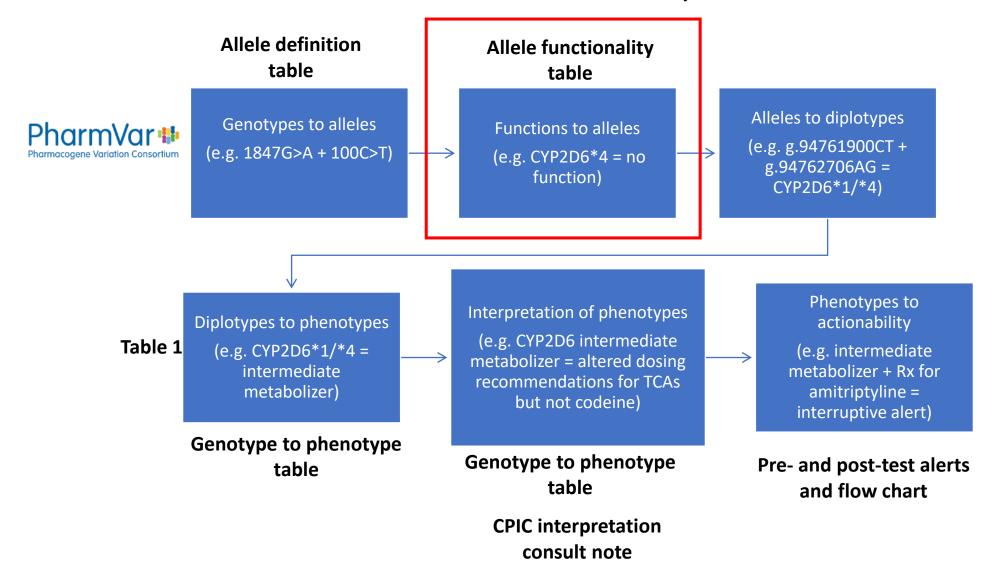

Project details and survey results:

- Project background and methods因
- Evidence review summary
- Survey 1 results区
- <u>Survey 2 results</u>凡
- Survey 3 results 🖪
- Survey 4 results
- Survey 5 results
- Survey 6 results
- <u>Survey 7 results</u> 及
- Survey 8 results区

https://cpicpgx.org/resources/cyp2d6-genotype-to-phenotype-standardization-project/

Inferred CYP2D6 Phenotype	Previous CPIC Definition (AS)	Previous DPWG Definition (AS)	Consensus Definition (AS)	Consensus Contiguous Definition (AS)	Examples of CYP2D6 diplotypes for consensus translation method
Ultrarapid Metabolizer	>2	>2.5	>2.25	>2.25	*1/*1xN, *1/*2xN, *2 ¹ /*2xN, *1x2/*9
Normal Metabolizer	1-2	1.5-2.5	1.25 1.5 2.0 2.25	1.25 ≤ x ≤ 2.25	*1/*1, *1/*2, *1/*9, *1/*41, *1/*10, *2x2/*10
Intermediate Metabolizer	0.5	0.5-1	0.25 0.5 0.75 1	0 < x <1.25	*4/*10, *4/*41, *1/*5, *10/*10, *41/*41
Poor Metabolizer	0	0	0	0	*3/*4, *4/*4, *5/*5, *5/*6


CPIC guideline development process


Supporting Tables and Materials

- Allele definition table
- Allele functionality table
- Allele frequency table
- Diplotype/phenotype table
 - Example EHR interpretation consult note text
 - Implementation workflow
- Pre and post test alerts
 - Flow chart
- Files mapping gene and drug names to other nomenclatures/IDs

CPIC tables allow translation of genetic test results to actionability

CPIC tables allow translation of genetic test results to actionability

Assignment of phenotype based on allele function

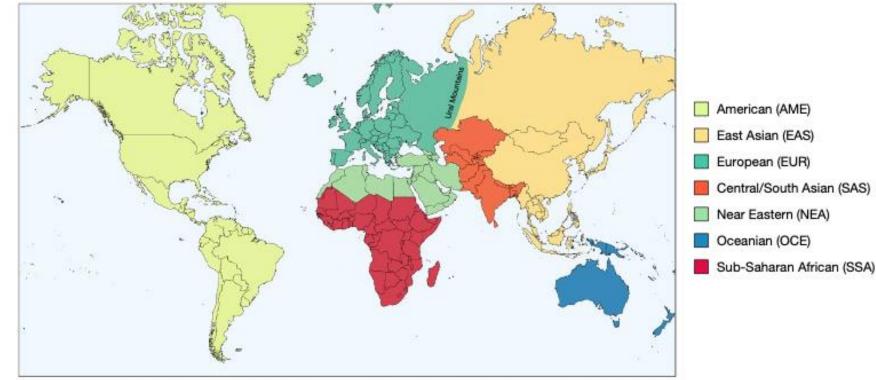
Table 1 Assignment of likely CYP2D6 phenotypes based on diplotypes

Likely phenotype	Activity score	Genotypes ^a	Examples of CYP2D6 diplotypes
CYP2D6 Ultrarapid Metabolizer (~1–2% of patients) ^b	>2.0	An individual carrying duplications of functional alleles	*1/*1xN, *1/*2xN, *2/*2xN ^c
CYP2D6 Normal Metabolizer (~77–92% of patients)	2.0-1.0 ^d	An individual carrying two normal function alleles or two decreased function alleles or one normal function and one no function allele or one normal function and one decreased function allele or combinations of duplicated alleles that result in an activity score of 1.0–2.0	*1/*1, *1/*2, *1/*4, *1/*5, *1/*9, *1/*41, *2/*2,*41/*41
CYP2D6 Intermediate Metabolizer (~2–11% of patients)	0.5	An individual carrying one decreased function and one no function allele	*4/*10,*4/*41, *5/*9
CYP2D6 Poor Metabolizer (~5–10% of patients)	0	An individual carrying only no functional alleles	*3/*4,*4/*4, *5/*5, *5/*6

Clin Pharmacol Ther. 2017 Aug;102(2):213-218.

CPIC Allele Clinical Function

- Will be used to generate lists of clinically actionable variants
 - If that variant were present in the right gene dosage (e.g. usually as part of a diplotype with another similarly actionable variant), prescribing decisions would be altered from the normal baseline prescribing actions.
- Clinical function assignment will be given if the evidence is strong enough to inform prescribing actionability
- The threshold for what evidence is enough to inform actionability may differ for different genes.


Allele Clinical Function to the allele vs categorizing as "uncertain"

Supportive Evidence needed to assign function vs uncertain	DEFINITIVE	The role of this variant in this particular drug phenotype has been repeatedly demonstrated, and has been upheld over time (in general, at least 3 years). No convincing evidence has emerged that contradicts the role of the variant in the specified drug phenotype.
	STRONG	The role of this variant in the drug phenotype has been independently demonstrated in at least two separate clinical studies providing strong supporting evidence for this variant's role in drug phenotype and there is compelling variant-level evidence from different types of supporting experimental data. In addition, no convincing evidence has emerged that contradicts the role of the variant in the noted drug phenotype.
	MODERATE LIMITED	 There is moderate evidence to support a causal role for this variant in this drug phenotype, including both of the following types of evidence: At least 2 patient cases evidence for drug phenotype causality Some experimental data supporting the variant-drug phenotype association And no convincing evidence has emerged that contradicts the role of the variant in the noted drug phenotype. There is limited evidence to support a causal role for this variant in this drug phenotype, such as:
		 Fewer than 2 patient cases experimental or computational data supporting the variant-drug phenotype association And no convincing evidence has emerged that contradicts the role of the variant in the noted drug phenotype.
Inadequate EVIDENCE = uncertain function		 * Fewer than 2 patient cases with no convincing experimental data, or * fewer than 2 patient cases and extremely limited or conflicting experimental data. This designation should be used when the evidence is not strong enough to support a clinical functional status that can inform prescribing actionability. The threshold for what evidence is enough to inform actionability may differ for different genes.

			1		1		
GENE: CYP2C9							
Allele/cDNA/rsID	Activity Score (Optional)	Allele Functional Status (Optional)	Allele <u>Clinical</u> Functional Status (Required)*- initial assessment	Allele Clinical Function Substrate Specificity (Optional)	PMID (Required)	Strength of Evidence (Optional)	Findings (Optional)
*1		Normal function	Normal function		23752738		23752758: N/A
*2		Decreased Function	Decreased function	S-warfarin, warfarin, tolbutamide, phenytoin, phenprocoumon, fluribiprofen, perazine, sulphamethoxazole, fluoxetine, phenprocoumon, tenoxicam, clopidogrel, carvediol, propofol, mestranol, meloxicam, avatrombopag, siponimod, piroxicam, metamizole	23752738; 10413320; 8004131; 12496751; 21110013; 11668218; 9698079; 22547083; 25144335; 25775139; 27298492; 12520632; 12698304; 9698079; 9686881; 15824753; 17895500; 24322786; 27199745; 12621390; 9522436; 21148049; 12621390; 9522436; 21148049; 12426520; 19298642; 8873200; 24077631; 22547083; 25075423; 12520632; 11875364; 9522436; 27163851; 11908757; 11434505; 16815679; 21068649; 22561479; 22641027; 28820457; 23287317; 10510154; 11026737; 19298642; 24663076; 14726986; 16236141; 25884291; 15128047; 15742978; 15229460; 18992346; 17900275;		23752738: S-warfarin (in tolbutamide (in vitro) 1041 phenytoin (in vitro); 80041 (in vivo); 12496751: S-wa 21110013: phenprocoum 11668218: phenytoin (in v fluribiprofen (in vitro) Lowe for oxidation of S-flurbipro (minor differences betwee 22547083: fluribiprofen (in *2 have similar Km values reduced Vmax compared clearance is substantially than *1; 25144335: fluribip 61.36% relative clearance *1; 25775139: fluribiprofe measured metabolic ratio and the *1/*2 genotype wa

Allele Frequency File Updates

- Populations binned into different supersets based on guideline
 - E.g. Egyptians: African, Middle Eastern, Caucasian
- Biogeographical population groups from
 - Standardized
 biogeographic
 grouping system
 for annotating
 populations in

pharmacogenetic research. (2018) Clinical Pharmacology and Therapeutics, epub.

Official journal of the American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE in Medicine

Open

Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC)

Kelly E. Caudle, PharmD, PhD¹, Henry M. Dunnenberger, PharmD², Robert R. Freimuth, PhD³, Josh F. Peterson, MD^{4,5}, Jonathan D. Burlison, PhD¹, Michelle Whirl-Carrillo, PhD⁶, Stuart A. Scott, PhD⁷, Heidi L. Rehm, PhD⁸, Marc S. Williams, MD⁹, Teri E. Klein, PhD⁶, Mary V. Relling, PharmD¹, James M. Hoffman, PharmD, MS¹

<u>Genet Med.</u> 2017 Feb;19(2):215-223.

Term/gene category	Final term ^a	Functional definition	Genetic definition	Example diplotypes/alleles
Allele	Increased function	Function greater than normal function	N/A	CYP2C19*17
functional status: all genes	Normal function	Fully functional/wild-type	N/A	CYP2C19*1
	Decreased function	Function less than normal function	N/A	CYP2C19*9
	No function	Nonfunctional	N/A	CYP2C19*2
	Unknown function	No literature describing function or the allele is novel	N/A	CYP2C19*29
	Uncertain function	Literature supporting function is conflicting or weak	N/A	CYP2C19*12
Phenotype: drug-	Ultrarapid metabolizer	Increased enzyme activity compared to rapid metabolizers	Two increased function alleles, or more than 2 normal function alleles	CYP2C19*17/*17 CYP2D6*1/*1XN
metabolizing enzymes (CYP2C19,	Rapid metabolizer	Increased enzyme activity compared to normal metabolizers but less than ultrarapid metabolizers	Combinations of normal function and increased function alleles	CYP2C19*1/*17
CYP2D6, CYP3A5, CYP2C9,	Normal metabolizer	Fully functional enzyme activity	Combinations of normal function and decreased function alleles	CYP2C19*1/*1
TPMT, DPYD, UGT1A1)	Intermediate metabolizer	Decreased enzyme activity (activity between normal and poor metabolizer)	Combinations of normal function, decreased function, and/or no function alleles	CYP2C19*1/*2
	Poor metabolizer	Little to no enzyme activity	Combination of no function alleles and/ or decreased function alleles	CYP2C19*2/*2
Phenotype: transporters	Increased function	Increased transporter function compared to normal function.	One or more increased function alleles	SLCO1B1*1/*14
(SLCO1B1)	Normal function	Fully functional transporter function	Combinations of normal function and/ or decreased function alleles	SLCO1B1*1/*1
	Decreased function	Decreased transporter function (function between normal and poor function)	Combinations of normal function, decreased function, and/or no function alleles	SLCO1B1*1/*5
	Poor function	Little to no transporter function	Combination of no function alleles and/ or decreased function alleles	SLCO1B1*5/*5
Phenotype: high-risk	Positive	Detection of high-risk allele	Homozygous or heterozygous for high- risk allele	HLA-B*15:02
genotype status (HLA-B)	Negative	High-risk allele not detected	No copies of high-risk allele	

Table 2 Final consensus terms for allele functional status and phenotype

*All terms should begin with the gene name (e.g., CYP2D6 Poor metabolizer, TPMT Normal metabolizer, SLCO1B1 decreased function).

Genet Med. 2017 Feb;19(2):215-223.

Standardization not completed for all known pharmacogenes or consensus not reached

Additional standardization opportunities exist beyond the genes presented here. For example, VKORC1 is the one CPIC level A gene (https://cpicpgx.org/genes-drugs) on which we did not reach a consensus. This gene is tested primarily in the context of predicting starting doses of the common anticoagulant warfarin, which is also dependent on CYP2C9. Therefore, many laboratories report a drug-centered phenotype such as "greatly increased sensitivity to warfarin" (see the CPIC guideline for warfarin²¹), which complicated standardization of VKORC1 terms following the formats used for other genes. In addition, VKORC1 genotype and inferred phenotypes for warfarin dosing are also reported by some laboratories and the CAP proficiency testing surveys according to the CYP2C9 and VKORC1 policy statement published by the ACMG in 2008,22 which further could have added to the difficulty in standardizing VKORC1.

RYR1 Allele Functionality Table

GENE: RYR1	8/16/2018						
	rsID ^a	Nucleotide change ^b	Protein change ^c	Allele Functional Status ^d	Finding		
					increased caffeine-induced calcium release in CHO cells	11928716	
	rs193922878	c.14512C>G	p.L4838V	Increased function	accelatered CICR	11928716, 167	
	15155522676	0.145120/0	p.14030v	increased function	associated with MH (supplemental material)	16917943	
					positive IVCT; increased sensitivity to caffeine and chlore	19191329	
					associated with MH (supplemental material)	16917943	
					d to the left	i 28403410	
	rs118192168	Torn	n Ctan	dardi	7 TION http://www.	16372898	
		IEIII			zation II	15731587, 214	
						16163667, 193	
		c.14582G>A	p.R4861H		4-chloro-m-cresol resulted in almost no increase in the [C 11741831		
	rs63749869			Uncertain function ^e	mutation detected was concordant with CCD status only; 14985404		
	1303745005				positive IVCT in CCD patient	12565913, 170	
					positive CHCT	23558838	
					I4898T led to a simultaneous increase in intracellular calc 10097181		
					homozygous expression of I4897T in dyspedic myotubes r 11274444		
					not elevated resting calcium; no spontaneous calcium osc 11524458		
					incorporation of the I4897T mutation into leaky release cl 12642598		
					no high-affinity 3H-ryanodine binding was detected; Ca2		
	rs118192170	c.14693T>C	p.14898T	Decreased function	myotubes from the CCD pa-tients harboring the I4898T a	n 15299003	
					positive IVCT in CCD patient	17081152	
					RYR1 mutant linked to CCD, I4898T, did not show any res		
					in 4-6-mo-old heterozygous Ryr1(I4895T/+) knock-in mice		
					Inhibition of voltage-gated Ca(2+) release due to reduction	21825032	
					decreases voltage-gated calcium release and resting cyt	28337975	

Non-standardized genes with CPIC guidelines

Gene	Drug	CPIC Level	Efficacy, adverse reaction, both?	Description
RYR1/CACNA1S	halogenated anesthetics, succinylcholine	A	Adverse reaction only	Variants in Ca channels cause adverse drug reaction
CFTR	ivacaftor	A	Efficacy only	Loss of function variants predict drug efficacy (drug targets specific Cl channel variants)
G6PD	rasburicase	A	Adverse reaction only	Variants cause adverse drug reaction through loss of drug detoxification pathway
IFNL3	peginterferon alfa- 2a	А	Efficacy only	Genotype predicts drug efficacy
VKORC1	warfarin	A	Both efficacy and adverse reaction	Variants cause altered efficacy and adverse reaction risk due to dose sensitivity

Database & Application Programming Interface (API) Development

- Goals:
 - Create a database to house CPIC information including recommendations, all supplemental table information (allele mappings, frequencies, function, diplotypes, etc.) and publications
 - Create an API to query the database for internal CPIC use (eg. populate CPIC website, automatic table generation) and for external users wanting CPIC data

Acknowledgements

- Rose Gammal
- PGRN
- Stanford
 - Teri Klein
 - Russ Altman
 - Michelle Whirl-Carrillo
 - PharmGKB curators
- CPIC members/observers
- CPIC informatics working group
 - James Hoffman
 - Michelle Whirl-Carrillo
 - Bob Freimuth

- CPIC Steering Committee
 - Mary Relling
 - Julie Johnson
 - Teri Klein
 - Dan Roden
 - Rachel Tyndale
- PharmVar
 - Andrea Gaedigk

This work was funded by the National Institutes of Health (NIH) (R24GM115264 and U24HG010135)