#### Pharmacogenetics of β-blockers: CPIC Proposal for ADRB1, GRK5 and CYP2D6

Cameron D. Thomas, Pharm.D. Postdoctoral Fellow in Genomic Medicine Julie A. Johnson, Pharm.D. Dean and Distinguished Professor





Describe pharmacogenetic factors affecting  $\beta$ -blocker metabolism and response

Provide insight into the robustness of the genetic associations

Discuss clinical interpretations for potential translation of variants influencing β-blocker response into practice



#### β-blockers

- Among most commonly used of all drugs
  - Common indications: Heart failure, ischemic heart disease, hypertension
  - Four beta-blockers in top 50 prescribed drugs in 2020 (not including combo products)
    - Metoprolol #6 68M
    - Carvedilol #29 23M
    - Atenolol #36 20M
    - Propranolol #41 18M
- Modulate sympathetic nervous system activation to produce:
  - $\downarrow$  chronotropic
  - $\downarrow$  inotropic
  - $\downarrow$  dromotropic
- Variation within genes that affect β-blocker pharmacokinetic and pharmacodynamic properties contribute to wide inter-patient variability in response



Pharmacodynamic Pathways of  $\beta 1$  and  $\beta 2$ Receptors and Resulting cAMP Generation





#### Phenotype and Variant Allele Frequencies

|                                                                                                                                                                                                                                                                                                          | EUROPEAN | AFRICAN | ASIAN |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|-------|--|--|--|--|
| PHENOTYPE FREQUENCIES                                                                                                                                                                                                                                                                                    |          |         |       |  |  |  |  |
| CYP2D6                                                                                                                                                                                                                                                                                                   |          |         |       |  |  |  |  |
| PM                                                                                                                                                                                                                                                                                                       | 6        | 2       | 2     |  |  |  |  |
| IM                                                                                                                                                                                                                                                                                                       | 38       | 45      | 29    |  |  |  |  |
| NM                                                                                                                                                                                                                                                                                                       | 51       | 44      | 66    |  |  |  |  |
| UM                                                                                                                                                                                                                                                                                                       | 4        | 4       | 2     |  |  |  |  |
| VARIANT ALLELE FREQUENCIES                                                                                                                                                                                                                                                                               |          |         |       |  |  |  |  |
| ADRB1                                                                                                                                                                                                                                                                                                    |          |         |       |  |  |  |  |
| rs1801252 (Gly49)                                                                                                                                                                                                                                                                                        | 13       | 16      | 5     |  |  |  |  |
| rs1801253 (Gly389)                                                                                                                                                                                                                                                                                       | 31       | 37      | 38    |  |  |  |  |
| GRK5                                                                                                                                                                                                                                                                                                     |          |         |       |  |  |  |  |
| rs2230345 (Leu41)                                                                                                                                                                                                                                                                                        | 2        | 16      | 0     |  |  |  |  |
| IM: intermediate metabolizer; NM: normal metabolizer; PM: poor metabolizer; UM: ultrarapid metabolizer. CYP2D6 phenotype frequencies from https://cpicpgx.org/. <i>ADRB1</i> and <i>GRK5</i> variant allele frequencies from dbGaP, with the resulting encoded variant allele amino acid in parentheses. |          |         |       |  |  |  |  |



#### ADRB1



β1-adrenergic receptors are modulated by desensitization and downregulation





### ADRB1 is a determinant of antihypertensive response to $\beta$ -blockers

#### **Representative examples:**



**Fig 2.** BP response to metoprolol by  $\beta_1$ -adrenergic receptor ( $\beta_1$ AR) haplotype pair (diplotype). Data are presented as mean reduction and SE. SR, Ser49Arg389 haplotype; SG, Ser49Gly389 haplotype; GR, Gly49Arg389 haplotype. *P* = .006, between groups for change in DBP from baseline to treatment.

Johnson, et al. *Clin Pharmacol Ther*. 2003;74:44-52. Liu, et al. *Clin Pharmacol Ther*. 2006;80:23-32.



**Fig 2.** Blood pressure response to metoprolol monotherapy in patients with hypertension stratified according to  $\beta_1$ -adrenergic receptor Gly389Arg genotypes (Arg389Arg, n = 33; Gly389Arg, n = 19; Gly389Gly, n = 9). Data are presented as mean percentage decrease with SD. SBP, Systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure.



## ADRB1 Ser49-Arg389 carriers associated with increased risk for MACE (death, MI, stroke)

**Figure 1** Associations of the *ADRB1* Ser49-Arg389 haplotype with primary and secondary outcomes. Hazard ratios are based on reduced model adjusted for age, sex, and race/ethnicity. \*Crude incidence per 1,000 patient years. MI, myocardial infarction.

| Event               | No. copies<br>Ser49-Arg389 | Incidence* | Hazard ratio (95% | Confidence interval) | Ρ      |
|---------------------|----------------------------|------------|-------------------|----------------------|--------|
| Primary outcome     | 0                          | 10.8       | 1.00 (reference)  | +                    |        |
|                     | 1                          | 17.8       | 1.59 (1.12-2.27)  | -•-                  | 0.01   |
|                     | 2                          | 15.6       | 1.35 (0.91-1.99)  | l − 1                | 0.14   |
| All-cause mortality | 0                          | 1.9        | 1.00 (reference)  | •                    |        |
|                     | 1                          | 7.4        | 3.88 (1.76-8.52)  |                      | 0.0007 |
|                     | 2                          | 6.3        | 3.26 (1.42-7.49)  | i l⊢•−ľ              | 0.005  |
| Nonfatal MI         | 0                          | 3.7        | 1.00 (reference)  | •                    |        |
|                     | 1                          | 5.6        | 1.40 (0.76-2.57)  | +•                   | 0.28   |
|                     | 2                          | 4.7        | 1.09 (0.55-2.15)  |                      | 0.82   |
| Nonfatal stroke     | 0                          | 5.1        | 1.00 (reference)  | •                    |        |
|                     | 1                          | 5.1        | 0.97 (0.56-1.69)  |                      | 0.93   |
|                     | 2                          | 5.3        | 0.99 (0.54-1.82)  | <b>⊢</b> ∔–Ì         | 0.97   |
|                     |                            |            |                   | 0.61 48              |        |

Ser49-Arg389 carriers vs. non-carriers: HR, 1.51 (95% Cl, 1.07-2.12); p=0.02



### ADRB1 Ser49-Arg389 is favorable response allele for β-blocker therapy in ischemic heart disease

**Figure 2** All-cause mortality and mean on-treatment blood pressure by *ADRB1* Ser49-Arg389 haplotype and atenolol/verapamil sustained-release (SR) therapy. HR, hazard ratio; 95% Cl, 95% confidence interval; S49-R389, Ser49-Arg389 haplotype; AT, atenolol; VE, verapamil SR; SBP, systolic blood pressure; DBP, diastolic blood pressure.





Pacanowski, et al. Clin Pharmacol Ther. 2008;84:715-21.

# ADRB1 Arg389 is the favorable β-blocker response allele in heart failure

- BEST: NYHA class III-IV HFrEF
- The risks for death and hospitalization were not significantly different between bucindolol and placebo arms among Gly389 carriers
- Conclusion: benefits of bucindolol in the studied HF population were confined to those with the Arg389Arg genotype



ADRB1 Arg389Gly associated with atenolol response in children and young adults with Marfan syndrome

• Pharmacogenetic substudy of a randomized trial of atenolol vs losartan in 250 participants with Marfan syndrome

Arg389Arg: greater improvements in aortic-root z-score for atenolol-treated compared with losartan-treated participants





Positive associations identified between *ADRB1* and hemodynamic and clinical outcomes

Hemodynamics: strongest data exist for an association between ADRB1 and DBP response to  $\beta$ -blockers

β-blocker therapy may offset the risk for MACE observed with the *ADRB1* Ser49-Arg389 haplotype

Studies support greater benefits from  $\beta$ -blocker therapy among HFrEF patients with the Arg389Arg genotype compared to Gly389 carriers.

**College of Phar** 

Associations identified between *ADRB1* and: metoprolol, atenolol, bucindolol, carvedilol, thus implying a class effect





## G protein-coupled receptor kinases (GRKs) desensitize β-receptors



Thomas, Johnson. *Expert Opin Drug Metab Toxicol*. 2020. Liggett, et al. *Nat Med*. 2008;14:510-7.



## β-blocker therapy mimics the survival advantage of *GRK5* Leu41

#### HFrEF (LVEF < 40%; NYHA class II-IV); all participants of African ancestry

Comparison of *GRK5* Gln41Gln subjects with and without b-blocker use.

Comparison of *GRK5* Leu41 carriers with and without b-blocker use.

Comparison of *GRK5* Gln41Gln subjects treated with  $\beta$ -blockers to *GRK5* Leu41 carrier subjects without  $\beta$ -blocker use.







**UF** College of Pharmacy UNIVERSITY of FLORIDA

Liggett, et al. Nat Med. 2008;14:510-7.

*GRK5* Leu41 associated with decreased odds of adverse cardiovascular outcomes

- Hypertensive cohort with CAD
- Outcome: death, MI, or stroke
- Leu41 carriers vs. Gln41Gln; p=0.022
- Generalizability of protective role of Leu41 allele
  - Heart failure
  - Hypertension + coronary artery disease
- *GRK5* Leu41 does not influence BP response to antihypertensives





#### CYP2D6



There is evidence CYP2D6 affects the pharmacokinetics of CYP2D6-dependent  $\beta$ -blockers





## CYP2D6 phenotype affects metoprolol pharmacokinetics and change in HR



Table 3 Changes from baseline in HR, SBP, and DBP in PMs, IMs, EMs, and UMs of CYP2D6 treated with metoprolol

| Parameter                   | PM             | IM              | EM              | UM              | Р      |
|-----------------------------|----------------|-----------------|-----------------|-----------------|--------|
| Change in HR<br>(beats/min) | -16.6±6.9      | $-18.6 \pm 5.1$ | $-11.4 \pm 6.6$ | $-11.2 \pm 8.2$ | 0.0001 |
| Change in SBP<br>(mm Hg)    | $-9.4 \pm 9.0$ | -6.5±11.1       | -7.1±9.8        | -9.4±5.1        | 0.91   |
| Change in DBP<br>(mm Hg)    | $-9.3 \pm 5.1$ | $-8.3 \pm 7.5$  | $-7.0 \pm 6.6$  | $-7.5 \pm 4.8$  | 0.37   |

CYP2D6, cytochrome P450 2D6; DBP, diastolic blood pressure; EM, extensive metabolizer; HR, heart rate; IM, intermediate metabolizer; PM, poor metabolizer; SBP, systolic blood pressure; UM, ultrarapid metabolizer.



Blake, et al. *Clin Pharmacol Ther*. 2013;94:394-9. Hamadeh, et al. *Clin Pharmacol Ther*. 2014;96:175-81.

# There is limited clinical utility for *CYP2D6* and β-blocker pharmacotherapy

- CYP2D6 associated with HR response but no other response phenotypes, in part explained by usual upward titration of dose and HR being used to define target dose
- Impact of *CYP2D6* on HR response is evident at lower doses while patient is still on the linear portion of the dose-response curve
- CYP2D6 not associated with:
  - BP responses
  - Adverse reactions (e.g., headache, dizziness, fatigue, dyspnea)
- PM/IM may achieve goal HR response at a lower than expected dose
- Possible clinical utility if CYP2D6 available in the electronic health record to better understand likely dose requirements for beta-blockade



#### Summary: *ADRB1*, *GRK5*, and *CYP2D6*

- *ADRB1* Arg389Arg, or Ser49-Arg389, associated with improved treatment outcomes with β-blocker therapy
- GRK5: GIn41GIn associated with 个 risk of adverse cardiovascular outcomes, which is offset by β-blocker therapy
- CYP2D6
  - If available to the clinician, may provide clinical utility given PM/IM patients may achieve the target HR response at a lower doses
  - Ordering *CYP2D6* test to guide β-blocker therapy not justified



Recommending a CPIC guideline for β-blockers: Genes likely to be included in guideline are *ADRB1, GRK5,* and *CYP2D6,* though literature review would need to include other genes, including *ADRB2, GRK4* and possibly others

Julie A. Johnson, Pharm.D.

Cameron D. Thomas, Pharm.D.

