Andrea Gaedigk, PhD Children's Mercy Kansas City, MO, USA Director, PharmVar

The Pharmacogene Variation (PharmVar) Consortium: update

PharmVar

Pharmacogene Variation Consortium

The Pharmacogene Variation (PharmVar) Consortium is a central repository for pharmacogene (PGx) variation that focuses on haplotype structure and allelic variation.

The information in this resource facilitates the interpretation of pharmacogenetic test results to guide precision medicine.

PharmVar

Pharmacogene Variation Consortium

What's new on PharmVar

NEW December 21, 2021

ŝ

QX

Database Updated to Version 5.1.5

Changes to Gene CYP2C9 Include:

1. Added new alleles *72,*73,*74, and *75.

The Pharmacogene Variation (PharmVar) Consortiu pharmacogene (PGx) variation that focuses on hapl

The information in this resource facilitates basic an interpretation of pharmacogenetic test results to gu

IMPROVEMENT November 17, 2021

Database Updated to Version 5.1.4

Changes include:

1. CYP3A5: Updated core variant definitions for multiple alleles to show SNP's that are variant on build GRCh37 only. For more information see the Read Me Document for CYP3A5

2. CYP3A5: Updated *9 variant to indicate functional change.

3. CYP2D6: Updated core variant definitions for multiple alleles to show SNP's that are variant on build GRCh37 only. For more information see the Read Me Document for CYP2D6

4. CYP2D6: Corrected GRCh37 translation for variant rs28735595.

PharmVar API Services are now available for third party use. For more information, visit the API Service

PharmVar Publications

Articles published by PharmVar are available on the resources page.

Original content from the cypalleles.ki.se site is available through the archiv

Publications

2017

The Pharmacogene Variation (PharmVar) Consortium: Incorporation of the Human Cytochrome P450 (*CYP*) Allele Nomenclature Database

Andrea Gaedigk¹, Magnus Ingelman-Sundberg², Neil A. Miller³, J. Steven Leeder¹, Michelle Whirl-Carrillo⁴, Teri E. Klein⁴ and the PharmVar Steering Committee

2018

The Evolution of PharmVar

Andrea Gaedigk^{1,2}, Katrin Sangkuhl³, Michelle Whirl-Carrillo³, Greyson P. Twist^{2,4}, Teri E. Klein³ and Neil A. Miller^{2,4} on behalf of the PharmVar Steering Committee

PharmVar and the Landscape of Pharmacogenetic Resources

Andrea Gaedigk^{1,*}, Michelle Whirl-Carrillo², Victoria M. Pratt³, Neil A. Miller⁴ and Teri E. Klein²

2019

Pharmacogene Variation Consortium: A Global Resource and Repository for Pharmacogene Variation

Andrea Gaedigk^{1,2,*}, Scott T. Casey³, Michelle Whirl-Carrillo⁴, Neil A. Miller³ and Teri E. Klein^{4,5}

2021

GeneFocus Reviews

2020

2019

PharmVar GeneFocus: CYP2D6

Charity Nofziger^{1,†}, Amy J. Turner^{2,3,†}, Katrin Sangkuhl⁴, Michelle Whirl-Carrillo⁴, José A.G. Agúndez^{5,6}, John L. Black⁷, Henry M. Dunnenberger⁸, Gualberto Ruano⁹, Martin A. Kennedy¹⁰, Michael S. Phillips¹¹, Houda Hachad¹², Teri E. Klein⁴ and Andrea Gaedigk^{13,14,*}

PharmVar GeneFocus: CYP2C19

Mariana R. Botton¹, Michelle Whirl-Carrillo², Andria L. Del Tredici³, Katrin Sangkuhl², Larisa H. Cavallari⁴, José A. G. Agúndez⁵, Jorge Duconge⁶, Ming Ta Michael Lee⁷, Erica L. Woodahl⁸, Karla Claudio-Campos⁴, Ann K. Daly⁹, Teri E. Klein², Victoria M. Pratt¹⁰, Stuart A. Scott^{11,12,†} and Andrea Gaedigk^{13,*,†}

PharmVar GeneFocus: CYP2C9

2021

Katrin Sangkuhl¹, Karla Claudio-Campos², Larisa H. Cavallari³, Jose A.G. Agundez⁴, Michelle Whirl-Carrillo¹, Jorge Duconge⁵, Andria L. Del Tredici⁶, Mia Wadelius⁷, Mariana Rodrigues Botton⁸, Erica L. Woodahl⁹, Stuart A. Scott^{10,11}, Teri E. Klein¹, Victoria M. Pratt¹², Ann K. Daly¹³ and Andrea Gaedigk^{14,15,*}

PharmVar GeneFocus: CYP2B6

2021

Zeruesenay Desta¹, Ahmed El-Boraie², Li Gong³, Andrew A Somogyi⁴, Volker M. Lauschke⁵, Collet Dandara⁶, Kathrin Klein^{7,8}, Neil A. Miller^{9,10}, Teri E. Klein³, Rachel F. Tyndale², Michelle Whirl-Carrillo^{3,†} and Andrea Gaedigk^{11,12,**†}

In revision (2022) GeneFocus *CYP3A5*

In preparation GeneFocus *SLCO1B1*

Standardization

PharmVar uses most recent genomic RefSeqs

- Derived from the gene's MANE¹ Select transcript
- This transcript matches GRCh38 and is 100% identical with its RefSeq for 5'UTR, CDS, splicing and 3'UTR
- LRGs (if existing) are cross-referenced in the Read Me (Table 1)
- Lifting star allele definitions to a newer RefSeq may cause
 - "SNP switching"
 - Changes in variant positions on the genomic RefSeq

Filter Options

"rs28371725" AND "Hide Suballeles"

Allele Name	PharmVar ID	Variants (Impact) variant = variants with dbSNP rsID	References
<u> </u>	PV00456	<u>2851C>T</u> (R296C), <u>2989G>A</u> (splice defect), <u>3854G>A</u> (E410K), <u>4181G>C</u> (S486T)	CPIC Clinical Function
<u> CYP2D6*41 </u>	PV00465	<u>2851C>T</u> (R296C), <u>2989G>A</u> (splice defect), <u>4181G>C</u> (S486T)	CPIC Clinical Function
<u> </u>	PV00491	<u>100C>T</u> (P34S), <u>2851C>T</u> (R296C), <u>2989G>A</u> (splice defect), <u>4181G>C</u> (S486T)	CPIC Clinical Function
<u> </u>	PV00508	<u>1736G>C</u> (C161S), <u>2851C>T</u> (R296C), <u>2989G>A</u> (splice defect)	CPIC Clinical Function
<u> </u>	PV00536	2989G>A (splice defect)	CPIC Clinical Function
± <u>CYP2D6*123</u>	PV00633	<u>2851C>T</u> (R296C), <u>2870T>C</u> (L302P), <u>2989G>A</u> (splice defect), <u>4181G>C</u> (S486T)	CPIC Clinical Function
± <u>CYP2D6*138</u>	PV00722	<u>2851C>T</u> (R296C), <u>2989G>A</u> (splice defect), <u>4145G>A</u> (R474Q), <u>4181G>C</u> (S486T)	CPIC Clinical Function

The SNV causing a splice defect is present not only in *CYP2D6*41*, but also *32, *69, *91, *119, *123 and *138

SLCO1B1

The Clinical Pharmacogenetics Implementation Consortium

(CPIC) guideline for SLCO1B1, ABCG2, and CYP2C9 and statin-associated

musculoskeletal symptoms

Authors:

*Rhonda Cooper-DeHoff^{1,2}, *Mikko Niemi^{3,4,5}, Laura B. Ramsey^{6,7}, Jasmine A. Luzum⁸, E. Katriina Tarkiainen^{3,4,5}, Robert J. Straka⁹, Li Gong¹⁰, Sony Tuteja¹¹, Russell A. Wilke¹², Mia Wadelius¹³, Eric A. Larson¹², Dan M. Roden^{14,15}, Teri E. Klein¹⁰, Sook Wah Yee¹⁶, Ronald M. Krauss¹⁷, Richard M. Turner¹⁸, Latha Palaniappan¹⁹, Andrea Gaedigk²⁰, Kathleen M. Giacomini¹⁶, Kelly E. Caudle²², Deepak Voora²³

This guideline uses the new PharmVar SLCO1B1 nomenclature

New PharmVar Gene: SLCO1B1

PharmVar introduced its first drug transporter in Oct 2021

- Star nomenclature was utilized before, but no oversight
 - Loosely followed rules first established for CYPs
 - Authors self-assigned star numbers
 - Many haplotypes were only partially characterized or selected information not included when allele definitions were published (e.g., synonymous SNPs)
 - Some alleles had more than one star number
- Expert panel reviewed all published information
 - Designated several alleles which were published w/o star number
 - Several haplotypes were merged, revised and/or corrected
- PharmVar Team utilized WGS data to substantiate existing allele definitions and discover novel haplotypes

Important Information

Gene Region Mapped

SLCO1B1 allele definitions

New gene: SLCO1B1

-

Merged Haplotypes (examples)

	PV01631	<u>35230A>G</u> (N130D), <u>35305C>A</u> (P155T)		CPIC Clinical Function
SLCO1B1*14	PV01691	<u>435230A>G</u> (N130D), <u>435305C>A</u> (P155T)	Lim	<u>Tirona et al. 2001</u>
SLC01B1*18	PV01677	<u>I35230A>G</u> (N130D), <u>35253G>A</u> , <u>I35305C>A</u> (P155T), <u>37091T>C</u> , <u>37117C>T</u>	Def	<u>Tirona et al. 2001</u> <u>deposited by PharmVar Team</u>
	PV01705	▲<u>35230A>G</u> (N130D), ▲<u>35305C>A</u> (P155T), <u>37117C>T</u>	Def	deposited by PharmVar Team
	PV01632	<u>35230A>G</u> (N130D), <u>37041T>C</u> (V174A)		CPIC Clinical Function
SLCO1B1*15A, SLCO1B1*15B, SLCO1B1*17	PV01704	₫<u>35230A>G</u> (N130D), ₫<u>37041T>C</u> (V174A), <u>37117C>T</u>	Def	<u>deposited by PharmVar Team</u> <u>Nozawa et al. 2002</u> <u>Niemi et al. 2004</u>
SLCO1B1*15C	PV01687	<u>-10499A>C, 435230A>G</u> (N130D), 4 <u>37041T>C</u> (V174A), <u>37117C>T</u>	Def	<u>Niemi et al. 2004</u> <u>deposited by PharmVar Team</u>
	PV01635	<u>35230A>G</u> (N130D), <u>97468A>C</u> (L643F)		CPIC Clinical Function
SLC01B1*20, SLC01B1*21, SLC01B1*35	PV01714	╡<u>35230A>G</u> (N130D), <u>37117C>T</u>, ╡<u>97468A>C</u> (L643F)		<u>Ramsey et al. 2012</u> <u>deposited by PharmVar Team</u> <u>Niemi et al. 2004</u>
	PV01693	<u>-10690T>C</u> , 4 35230A>G (N130D), <u>37117C>T</u> , 4 97468A>C (L643F)	Def	deposited by PharmVar Team

Re-assigned Some *1 Haplotypes

Ŧ	<u>SLC01B1*37</u>		PV01649	<u>35230A>G</u> (N130D)		CPIC Clinical Function →
		SLCO1B1*1B, SLCO1B1*1F	PV01716	<mark>≰35230A>G</mark> (N130D)	Def	<u>deposited by PharmVar Team</u> <u>Pasanen et al.</u>
		SLCO1B1*1G, SLCO1B1*1H	PV01694	<mark>≰35230A>G</mark> (N130D), <u>37117C>T</u>	Def	<u>deposited by PharmVar Team</u> Pasanen et al.

▲ <u>SLC01B1*38</u> PV01650		PV01650	<u>35297G>A</u> (R152L)		CPIC Clinical Function	
<u> SLC01B1*38.001 </u>	SLCO1B1*1C	PV01688	<u> ≰35297G>A</u> (R152L), <u>37440G>A</u>	Lim	Niemi et al. 2004	

Added Novel Haplotypes and CNVs

	PV01651	<u>35230A>G</u> (N130D), <u>55401C>T</u> (R253X)	CPIC Clinical Function
	PV01652	<u>37041T>C</u> (V174A), <u>97468A>C</u> (L643F)	CPIC Clinical Function
	PV01653	<u>35324G>T</u> (splice defect)	CPIC Clinical Function
	PV01654	<u>35230A>G</u> (N130D), <u>37038A>G</u> (Y173C)	CPIC Clinical Function
± <u>SLC01B1*43</u>	PV01655	<u>35230A>G</u> (N130D), <u>35305C>A</u> (P155T), <u>55377A>G</u> (I245V), <u>64457A>G</u> (I499V)	CPIC Clinical Function
	PV01656	<u>35230A>G</u> (N130D), <u>55377A>G</u> (I245V), <u>64457A>G</u> (I499V)	CPIC Clinical Function
	PV01657	<u>80781C>T</u> (R580X)	CPIC Clinical Function
	PV01658	<u>35230A>G</u> (N130D), <u>37041T>C</u> (V174A), <u>80781C>T</u> (R580X)	CPIC Clinical Function
	PV01659	<u>35230A>G</u> (N130D), <u>37041T>C</u> (V174A), <u>58970C>G</u> (P336R)	CPIC Clinical Function
<u>SLC01B1*48</u>	PV01732	SLCO1B1 full gene deletions; see Structural Variation for SLCO1B1	CPIC Clinical Function
SLC01B1*49	PV01734	SLCO1B1 partial gene deletions; see Structural Variation for SLCO1B1	CPIC Clinical Function

*39 - *47 novel haplotypes

*48 and *49 full and partial gene deletions

Impact on Genotype Test Interpretation and Phenotype Prediction

Genotype Before	Phenotype Before	Genotype updated	Phenotype Updated
*15/*17	Poor function	*15/*15	Poor function
*14/*17	Indeterminate Function	*14/*15	Decreased function
*17/*21	Indeterminate Function	*15/*20	Decreased function
*1B/*35	Possibly decreased function	*37/*20	Normal function

Many genotypes which were 'indeterminate' or had a 'possible' are now having a definitive function assignment

CYP3A4

CYP3A4 was transitioned into the PharmVar database

Allele definitions lifted to NG_008421.1

- Changes are summarized in the Change Log document
- Genomic positions changed
 - The position of the *22 SNV changed by 9 bp from 15389 to 15398 (ATG=+1)
- -392A>G switched to -392G>A
 - Legacy RefSeq has A at -392 while NG_00841.1 has G at this position
 - Consequently, all alleles that previously had this variant 'lost' it while all others 'gained' it
- Merged suballeles (e.g., *15A and *15B)
- Removed suballeles which only differed by having intronic SNVs or SNVs outside the region now used for allele definition (e.g., *1F, J, K, L, N, P, Q, R and S)
- PharmVar Team utilized WGS data to substantiate existing allele definitions and discover novel haplotypes
- *1G designation is pending

CYP3A5

CYP3A5 was transitioned into the PharmVar database

- Allele definitions lifted to NG_007938.2
 - Genomic positions changed
 - Positions after 14660 (ATG=+1) are shifted by -5 bp
 - Removed several suballeles due to uncertainty
 - SNVs being present/absence or insufficient support of haplotypes (e.g., *1B, *1C, *1E, *3C)
- PharmVar Team utilized WGS data to substantiate existing allele definitions and discover novel haplotypes
 - Data showed that CYP3A5*2, *4 and *5 SNPs are on the *3 haplotypes

CYP3A5*2, *4 and *5 (to be retired)

- Samples were homozygous for the CYP3A5*3 SNV and heterozygous for the *2 SNV (top), *4 SNV (middle) or *5 SNP (bottom)
- All samples with *2, *4 or *5 were heterozygous or homozygous for the *3 splice variant
- No evidence was found that suggested that the *2, *4 and *5 SNVs occur by themselves
- CYP3A5*6, *7 and *8 confirmed
- Genotype data for 1 subject suggests that CYP3A5*9 holds up

CYP2A6 Coming Soon

- CYP2A6 major enzyme for nicotine metabolism
- Complex gene locus
 - High similarity with *CYP2A7*
 - Copy number variation; rearrangements with CYP2A7
- Massive curation efforts over the last two years
- Aim to roll this out in spring/early summer 2022

Long To-Do List

- Introduction into the PharmVar database
 - CYP2A6 (spring/early summer 2022)
 - CYPs 1A1, 1A2, 1B1 and 2E1 (need major curation)

Need of data

O D(

15

Vine

4.000

4-14.

mou

140.000

halv +

HAMA

amer

- CYP4F2 in PharmVar database but only 3 star alleles
 - WGS data indicates there are more
- Data mining will likely reveal many new haplotypes for other CYPs that have not been extensively investigated yet
- Next 'new' gene?
 - Suggestions?
- Database functionality improvements
 - Online submission portal

PharmVar

Andrea Gaedigk Scott Casey (website developer) Erin Boone (data) **expert panelists**

PharmGKB

Teri Klein Michelle Whirl-Carrillo Katrin Sangkuhl Li Gong Rachel Huddart

NIGMS R24GM123930 (2017-2021) | supported by the Children's Mercy Research Institute