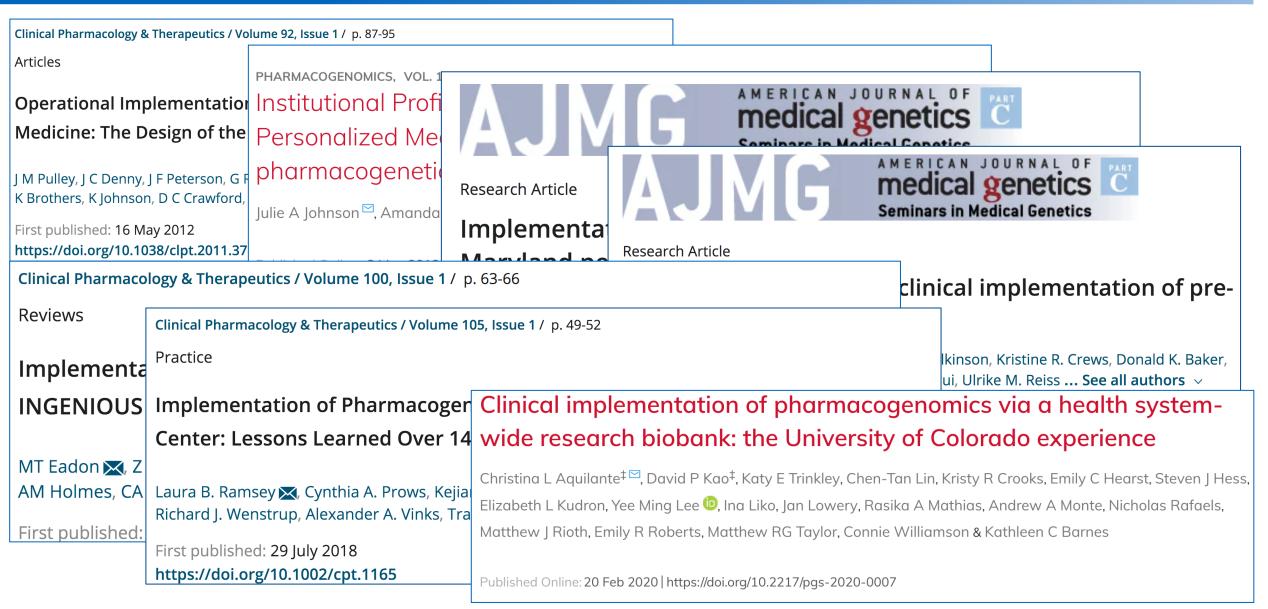


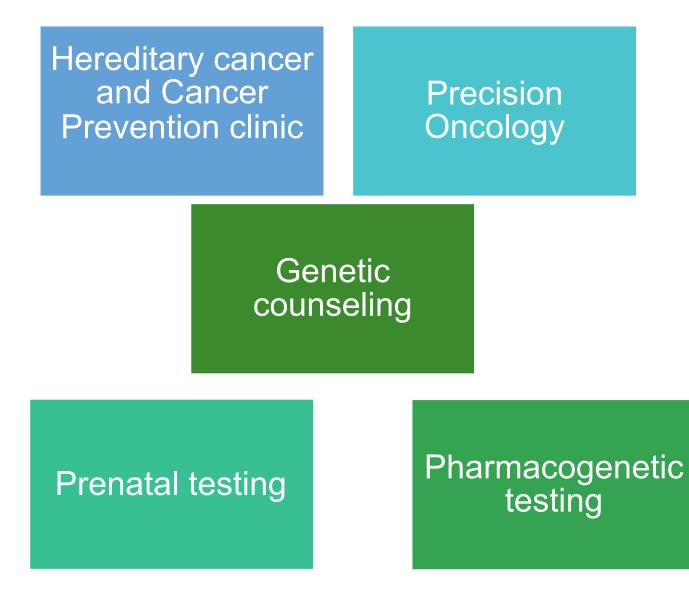
Precision Medicine and Genomics Health | Pharmacy

FROM PILOT TO EXPANSION: FEASIBILITY OF PHARMACOGENETICS BEYOND LARGE ACADEMIC HOSPITALS


Nihal El Rouby, Pharm.D., Ph.D. University of Cincinnati , St Elizabeth Hospital

May 4th, 2023

- Discuss the structure of the pharmacogenetic implementation program at St Elizabeth, a community-based hospital
- Demonstrate successful implementation stories in two settings: primary care setting and oncology
- Identify future needs, gaps and steps to maintain growth


MOST EARLY IMPLEMENTATION CAME FROM ACADEMIC HOSPITALS

ST ELIZABETH CANCER PRECISION CENTER

Precision Center – Structure

Adapted from Jody Wallace's slide

PILLARS OF SUCCESSFUL AND SUSTAINABLE IMPLEMENTATION

SE

<u>Align</u> with implementation goals of stake holders and clinicians

nairy spinotice antes

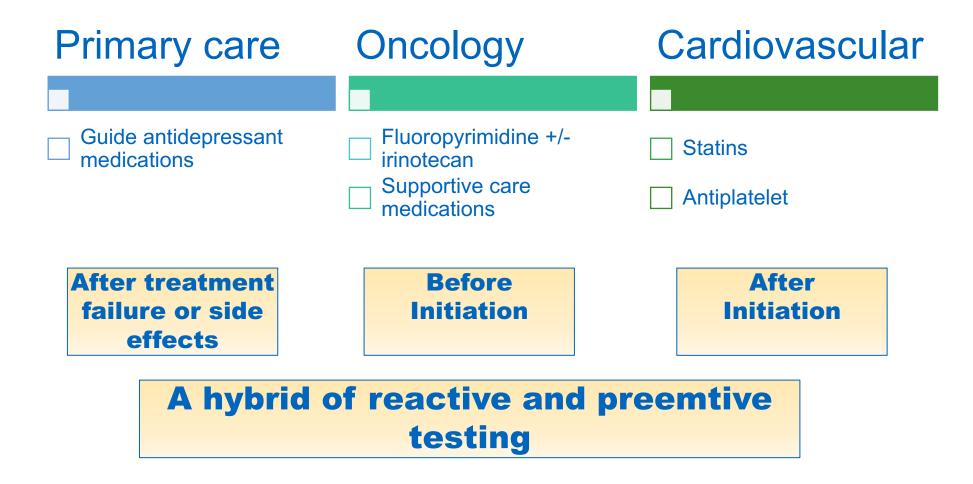
Select the implementation area or areas

Infra-structure: integration within Electronic Health records, Discrete data, clinical support

Education: providers and patients

Sustainability: data (feasibility, utility and economic) and assessment

Dictates your implementation areas and resources


Guarantees your sustainability, success and expansion

PMID: 33829852, PMID: 36059837, PMID: 30926959

PHARMACOGENETICS IMPLEMENTATION TIMELINE

PRIMARY AREAS OF PHARMACOGENETIC IMPLEMENTATION

PHARMACOGENETIC TEAM AND STRUCTURE

- Pharmacogenetic team
 - Two pharmacists
 - A genetic navigator
 - Rotating APPE students
 - Rotating residents
- Pharmacogenetic advisory committee
 - Discuss and prioritize implementation efforts
 - Representation from pharmacy, medical oncologist, PCPs

Ordering within	Results	Documentation in	Clinical Decision	
Epic		Epic	Support	
Provider places an order <u>A navigator</u> places the order in External lab	Results are reported through web portal	Pharmacist reviews and documents in Problem list	Clinical notes Genomic profile Best Practice Alerts	

CLINICAL DECISION SUPPORT (NOTES AND ALERTS)

a 61 y.o. male v	no has received pharmacogenomic testing to assist with oncology medication medication medication repetic results, pharmacogenetic results could provide guidance on the patient's	anagement. Through a re f	
inform future therapy.	eneric results, pharmacogeneric results could provide guidance on the patient's	current therapy, and pote	
Problem List			
Patient Active Problem List			
Diagnosis			
 Open-angle glaucoma 			
Nummular eczema			
 Allergic rhinitis, seasonal Gastroesophageal reflux disease with 	ut econhagitic		
Rectosigmoid cancer (HCC)	Assessment:		
 Malignant neoplasm of colon, unspec 	ed Assessment.		
CYP2D6 poor metabolizer (HCC)	Medications Informed by Pharmacogenetics:		
 DPYD intermediate metabolizer (HCC Monoallelic mutation of VKORC1 gen 			
CYP2C19 intermediate metabolizer (CO Anticipated start of FU as part of mFOLFOX		
	Pantoprazole 40 mg/d		
Allergies	Tamoprazole 40 mg/d		
Allergies	has pharmacogenomic results that affe	ect current and future medica	tion decisions. Based on patient's DPYD genetic results, patient
No Known Allergies	is predicted to have a partial DPD deficiency and therefore, pr	edicted to be at an increase	ed risk of severe or even fatal drug toxicity when treated
Current Medications			dose by 50%, followed by dose titration based on toxicity. Dose
Current Outpatient Medications Medication	can be increased in patients who do not experience toxic	<u>sity in the first two cycles t</u>	o maintain efficacy. Reduce the dose for patients who do not
acetaminophen (TYLENOL)	 tolerate the starting dose to minimize toxicities; use therapeut 	ic drug monitoring if available	e.
ascorbic acid (vitamin C) (VITAMIN C			
 BIMATOPROST (LUMIGAN OPHT) 	Please note that patient response to medications depend on r		comorbid conditions, response history, etc. Use clinical
 calcium carbonate/vitamin D3 (VITAN ORAL) 	N I judgement in addition to pharmacogenetic information for all n	nedication decisions.	
 dorzolamide-timoloL (COSOPT) 22.3- 	.8 Other PGX Medications		
Opht Drops			
multivitamin Oral Capsule pantagrazala (PROTONIX) 40 mg Ora	T Pantoprazole: Patient is predicted to have CYP2C19 Interme	ediate Metabolizer enzyme	activity (reduced CYP2C19 enzyme activity), which can lead
 pantoprazole (PROTONIX) 40 mg Ora Delaved Release (E.C.) 			tions, electrolyte imbalance and kidney dysfunction). Patient is
, , , ,	on 40 mg/d. For chronic therapy beyond 12 weeks, and after		is achieved, may consider a 50% reduction in the daily dose, if
Genetic Findings Pertinent to Current Me	lica appropriate while monitoring for efficacy of pantoprazole	,	······································
 DPYD: DPYD Intermediate Metaboliz 	rA '' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		

Genetic Findings Pertinent to Future Medications: • CYP2C19: CYP2C19 Intermediate Metabolizer

CYP2D6: CYP2D6 Poor Metabolizer AS = 0

Heavy Reliance on the CPIC content for clinical notes and BPAs

VISIBILITY OF PHARMACOGENETIC RESULTS

Problem list documentation and stand-alone pharmacogenetic tab

Genetics				
CYP2C19 intermediate metabolizer (HCC)	Create Notes	▲ Change Dx	X Resolve V Tod Chart Review Results Review Problem List Demographics G Genomic Activity (ActX) Report Viewer	
 CYP2D6 intermediate metabolizer (HCC) 	Create Notes	▲ Change Dx	K Resolve V Tod Genomics (ActX)	
CYP4F2 poor metabolizer (HCC)	Create Notes	▲ Change Dx	\times Resolve \checkmark Tod \leftarrow \sim \mathcal{O} \Leftrightarrow \square \square	
# HLA-A*3101 allele positive	Create Notes	▲ Change Dx	X Resolve V Tod ActX Results	
Monoallelic mutation of VKORC1 gene	Create Notes	▲ Change Dx	X Resolve V Tod Pharmacogenomics Profile/Recommendations Based on pharmacogenomic report, the following genotypes were detected:	
UGT1A1 intermediate	Create Notes	▲ Change Dx	PHARMACOGENOMICS PROFILE Pharmacogenomics Profile	
metabolizer (HCC)				
			Alternative options:	
			Fluoxetine, OR escitalopram/citalopram, venlafaxine OR paroxetine are reasonable for GAD, if clinically appropriate. If any of these SSRIs is indicated, initiate therapy with the standard starting dose, while titrating to clinical response. Co slower titration and a lower maintenance dose with escitalopram and citalopram.	onsider a
			Although the patient may not be on the current medication therapy, we highlight these medications below to consider avoiding or using with caution if indicated in future therapy.	
			Future Medications:	
			Patient is predicted to be a CYP2C9 intermediate metabolizer, indicating that they will metabolize CYP2C9-metabolized medications more slowly. See below for general recommendations:	
			Consider dose reduction or select alternative medications for the following medications: Fluvastatin: Prescribe < or = 40 mg per day as a starting dose and adjust doses of fluvastatin based on disease-specific guidelines. If dose > 40 mg needed for desired efficacy, consider an alternative statin or combination therapy (i.e., flur plus non-statin lipid-lowering therapy).	vastatin
			Patient is predicted to be a CYP2C19 intermediate metabolizer, indicating that they will metabolize CYP2C19-metabolized medications more slowly. See below for general recommendations:	
			Consider dose reduction, monitoring or select alternative medications for the following medications:	
			Tricyclic antidepressants (TCAs): amitriptyline, clomipramine, doxepin, imipramine, trimipramine Selective serotonin reuptake inhibitors (SSRIs): citalopram, escitalopram, sertraline Antifungals: voriconazole Proton pump inhibitors (PPIs): pantoprazole, omeprazole, lansoprazole, dexlansoprazole	
			Select alternative medication:	
			Antiplatelets: Clopidogrel is a prodrug activated by CYP2C19. CYP2C19 intermediate metabolizers are less able to activate this medication, leading to increased risk of major adverse cardiovascular events. Alternative antiplatelet therapy prasugrel, ticagrelor) is recommended.	y (e.g.
			Patient is a CYP3A5 Expressor, which can lead to lower dose-adjusted trough concentrations of tacrolimus with normal starting doses. If tacrolimus is indicated, we recommend increasing the starting dose by 1.5 to 2 times the recommend starting dose, though total starting dose should not exceed 0.3 mg/kg/day. We recommend therapeutic drug monitoring to guide dose further adjustments.	ded

RELAYING INFORMATION TO THE PATIENT

Customized MyChart patient education explaining current and future PGX

Dear

Your provider ordered pharmacogenetic testing to help better prescribe medications for you. These results were reviewed by the pharmacogenomic pharmacy team and our recommendations were sent to Dr. Pharmacogenetic results could provide guidance on your current medications, and potentially impact future medication therapy.

- · We DO NOT recommend changes to your current medications at this time.
- Your physician will decide if any adjustments are needed at this time. <u>DO NOT</u> stop or change the way you
 are currently taking your medications without first discussing with your doctor who prescribed the
 medication.

Your Pharmacogenomic Results:

Your results show that you have genetic variations in the following genes that could affect how your body breaks down certain medications:

- <u>CYP2B6</u>: Based on your genetic results, you are predicted to be a CYP2B6 Intermediate Metabolizer. This predicts that your body may break down certain medications at a slower rate than a patient who has a Normal Metabolizer status.
- Per your records, you ARE NOT currently taking a medication that could be impacted by your CYP2B6 genetic results.
 - Other medications that may be impacted by this result include:
 - Antivirals: Efavirenz

 <u>CYP2C19</u>: Based on your genetic results, you are predicted to be a CYP2C19 Intermediate Metabolizer. This predicts that your body may break down certain medications at a very slow rate, causing too much of the medication to build up. The buildup of the medication is what may cause side effects.

 Per your records, you ARE currently taking a medication (omeprazole) that could be impacted by these findings. DO NOT stop or change your medications without speaking to your doctor first. Your doctor will decide if a change in the medication or dose is needed.

Other medications that may be impacted by this result include:

- Tricyclic antidepressants (TCAs): amitriptyline, clomipramine, doxepin, imipramine, trimipramine
- Selective serotonin reuptake inhibitors (SSRIs): citalopram, escitalopram, sertraline
- Antifungals: voriconazole
- Proton pump inhibitors (PPIs): pantoprazole, omeprazole, lansoprazole, dexlansoprazole
- Other drugs use CYP2C19 to activate the medication. Intermediate metabolizers will be less able to "turn on" these medications, making them less likely to work for you. The following medications may be impacted by this result:
 - Antiplatelets: Clopidogrel

FEASIBILITY AND UTILITY OF MULTI-PHARMACOGENETIC PANEL TESTING AMONG PATIENTS WITHIN PRIMARY CARE

WHAT DO WE NEED? MORE ECONOMIC DATA

When do we need it? NOW!

PREEMPTIVE PHARMACOGENETIC TESTING: EXPLORING KNOWLEDGE AND PERSPECTIVES OF UNITED STATES PA

Nicholas J. Keeling, MS^{1,2}, Meagen M. Rosenthal, PhD¹, Donna West-Strum, RPh, Pl Amit Patel, PhD^{1,3}, Cyrine E. Haidar, PharmD², James M. Hoffman, PharmD, MS² ¹Department of Pharmacy Administration, University of Mississippi School of Pharmacy, University, MS, USA

²Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memph USA

³Medical Marketing Economics, LLC, Oxford, MS, USA

Abstract

PURPOSE—Preemptive pharmacogenetic testing aims to optimize medication use by having genetic information at the point of prescribing. Payers' decisions influence implementation of technology. We investigated U.S. payers' knowledge, awareness, and perspectives on preempti pharmacogenetic testing.

METHODS—A qualitative study was conducted using semi-structured interviews. Participant were screened for eligibility through an online survey. A blended inductive and deductive approach was used to analyze the transcripts. Two authors conducted an iterative reading proce to code and categorize the data.

RESULTS—Medical or pharmacy directors from 14 payer organizations covering 122 million U.S. lives were interviewed. Three concept domains and ten dimensions were developed. Key findings include: clinical utility concerns and limited exposure to preemptive germline testing, continued preference for outcomes from randomized controlled trials, interest in guideline development, importance of demonstrating an impact on clinical decision making, concerns of downstream costs and benefit predictability, and the impact of public stakeholders such as the FDA and CMS.

CONCLUSION—Both barriers and potential facilitators exist to developing cohesive reimbursement policy for pharmacogenetics, and there are unique challenges for the preemptive testing model. Prospective outcome studies, more precisely defining target populations, and predictive economic models are important considerations for future research.

Cost Effectiveness of Pharmacogenetic Testing for Drugs with Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines: A Systematic Review

Sarah A. Morris¹, Ashraf T. Alsaidi², Allison Verbyla³, Adilen Cruz³, Casey Macfarlane², Joseph Bauer³ and Jai N. Patel^{1,*}

The objective of this study was to evaluate the evidence on cost-effectiveness of pharmacogenetic (PGx)-guided treatment for drugs with Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines. A systematic review was conducted using multiple biomedical literature databases from inception to June 2021. Full articles comparing PGx-guided with nonguided treatment were included for data extraction. Quality of Health Economic Studies (QHES) was used to assess robustness of each study (0–100). Data are reported using descriptive statistics. Of 108 studies evaluating 39 drugs, 77 (71%) showed PGx testing was cost-effective (CE) (N = 48) or cost-saving (CS) (N = 29); 21 (20%) were not CE; 10 (9%) were uncertain. Clopidogrel had the most articles (N = 23), of which 22 demonstrated CE or CS, followed by warfarin (N = 16), of which 7 demonstrated CE or CS. Of 26 studies evaluating human leukocyte antigen (HLA) testing for abacavir (N = 8), allopurinol (N = 10), or carbamazepine/phenytoin (N = 8), 15 demonstrated CE or CS. Nine of 11 antidepressant articles demonstrated CE or CS. The median QHES score reflected high-quality studies (91; range 48–100). Most studies evaluating cost-effectiveness favored PGx testing. Limited data exist on cost-effectiveness of preemptive and multigene testing across disease states.

PMID: 36149409, PMID: 31048813

METHODS

- A Multi-collaborative, pilot study with a payer system and pharmacogenetic lab
- Aims: Investigate the utility and economic value among St Elizabeth patients
- Outreach to patients with a <u>recently prescribed</u> pharmacogenetic medication
 - Outreach was made to ~ 6000 patients from PCP
- Post pharmacogenetics testing
 - Consult notes to their PCPs
 - MyChart messages to the patients

METHODS

Collected data on:

- Number and percentage:
 - Patients with intervention, MyChart messages, physicians outreached
- Prevalence of medications with pharmacogenetic guidelines:
- Statins, opioids, clopidogrel, SSRIs, venlafaxine, NSAIDs, PPIs, metoprolol, ondansetron, warfarin, allopurinol, TCAs, antipsychotics, atomoxetine, phenytoin, thiopurine, cancer meds
- Prevalence of actionable gene-drug interactions:
- Patients with an interacting genotype and medications (e.g. CYP2D6 PM/opioids)

POST PHARMACOGENETIC TESTING INTERVENTIONS AND OUTREACH

Patient	Interventions		Physicians out reached
1043	402 (38.5 %)	952 (91.2%)	258

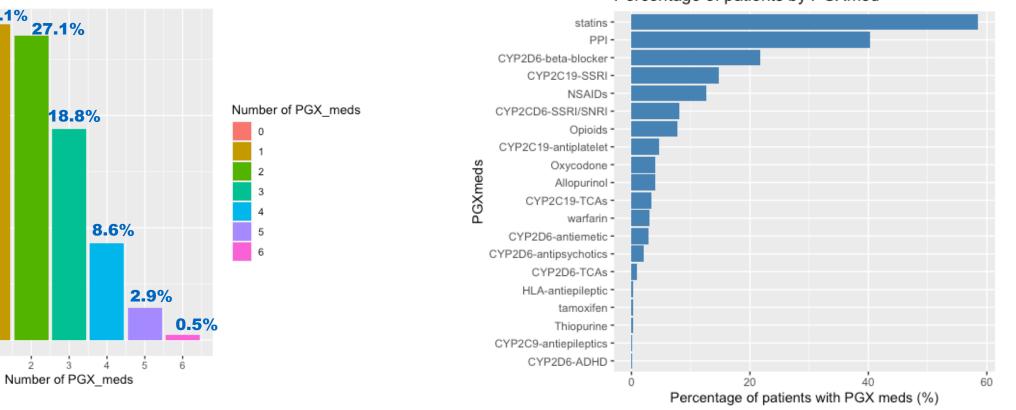
Intervention: dose increase; dose decrease; switch to alternative; discontinue

PREVALENCE OF PHARMACOGENETIC MEDICATIONS

~ 86% have one or more pharmacogenetic medications

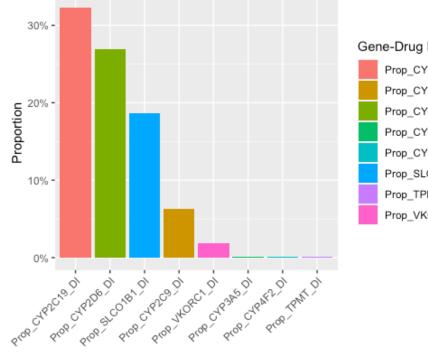
28.1%

2

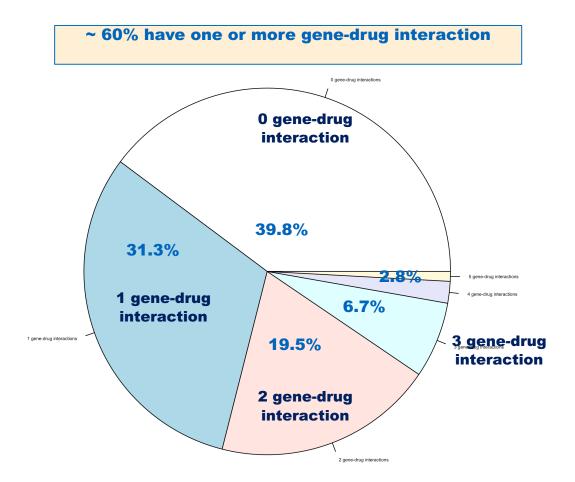

Percentage of patients with PGX meds

0 -

13.9%


Statins, PPIs, metoprolol, SSRIs and NSAIDs are the most common PGX meds

Percentage of patients by PGXmed


PREVALENCE OF GENE-DRUG INTERACTIONS

Interactions related to CYP2C19; CYP2D6, and SLCO1B1 were the most common

Proportion of patients with each gene drug interaction

SUMMARY AND NEXT STEPS

Summary

- Multi-gene panel, PGx testing of patients within Primary care is <u>feasible</u>
- PGx meds are prevalent; 86% patients had at least one PGx med
- Sixty percent of patients had one or more gene-drug interactions with the most common interactions related to CYP2C19; CYP2D6; and SLCO1B1 genes

Next steps

- Complete data collection on the uptake of interventions
- Providers' survey to understand the needs and improve the service
- Economic analysis
 - Medical and prescription claims

PGX TESTING TO GUIDE FLUOROPYRIMIDINE AND IRINOTECAN

DPYD screening could save Human lives!

DPYD Testing: Time to Put Patient comm **Safety First**

Sharyn D. Baker, PharmD, PhD¹; Susan E. Bates, MD²; Gabriel A. Brooks, MD³; William L. Dahut, MD⁴; Robert B. Diasio, MD⁵; Wafik S. El-Deiry, MD, PhD⁶; William E. Evans, PharmD⁷; William D. Figg, PharmD, MBA⁸; Dan L. Hertz, PharmD, PhD⁹; J. Kevin Hicks, PharmD, PhD¹⁰; Suneel Kamath, MD¹¹; Pashtoon Murtaza Kasi, MD¹²; Todd C. Knepper, PharmD¹⁰; Howard L. McLeod, PharmD¹³; Peter H. O'Donnell, MD¹⁴; Mary V. Relling, PharmD⁷; Michelle A. Rudek, PharmD, PhD¹⁵; Tristan M. Sissung, PhD⁸; D. Max Smith, PharmD¹⁶; Alex Sparreboom, PhD¹; Sandra M. Swain, MD¹⁶; and Christine M. Walko, PharmD¹⁰

In 2018, a patient received capecitabine without prior testing for dihydropyrimidine dehydrogenase (DPYD) and later presented with vomiting, rash, and diarrhea. The hospital failed to provide uridine triacetate in a timely fashion, and the patient died. The patient's widow filed a wrongful death lawsuit against Oregon Health Sciences University (OHSU) and assisted in the formation of a nonprofit organization to advocate for DPYD testing for fluoropyrimidines. A settlement for \$1 million US dollars was reached requiring OHSU oncologists to undergo education about DPYD testing and inform their patients about its availability.¹ Clinical

variants and fluoropyrimidine pharmacokinetics.¹⁰ This commentary will establish that pretreatment DPYD testing is well justified and recommend dose reduction in those patients with a decreased function variant. We recommend an immediate modification to the oncology treatment guidelines that include a fluoropyrimidine.

Severe Fluoropyrimidine-Associated Toxicity

A recent meta-analysis of 13,929 patients in 35 studies found that patients carrying DPYD*2A were much more likely to experience severe life-threatening toxicity from fluoropyrimidine therapy than those carrying only wild-11 The NICON

ve attitude for their three kids, the youngest of whom was 2. Kerrie's and vitality would carry her through chemo's side effects, they hoped.

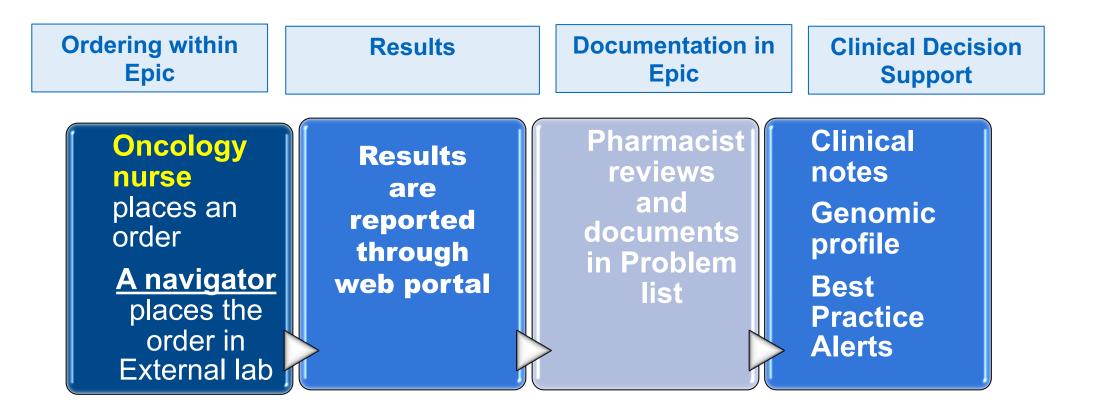
0

È ā

CONTROV

OHSU to pay \$1 million, promises change to settle lawsuit from widow of cancer patient

ated: May. 04, 2022, 11:05 a.m. | Published: May. 04, 2022, 7:00 a.m.


Kerrie Prettitore, center, with her husband, Glenn, and children Liam, Maeve and Fiona. The Ridgewood woman had a rare DDD I C

vre had a fatal reaction to OHSU's chemotherapy for his cancer, his nims in a lawsuit filed against the university.

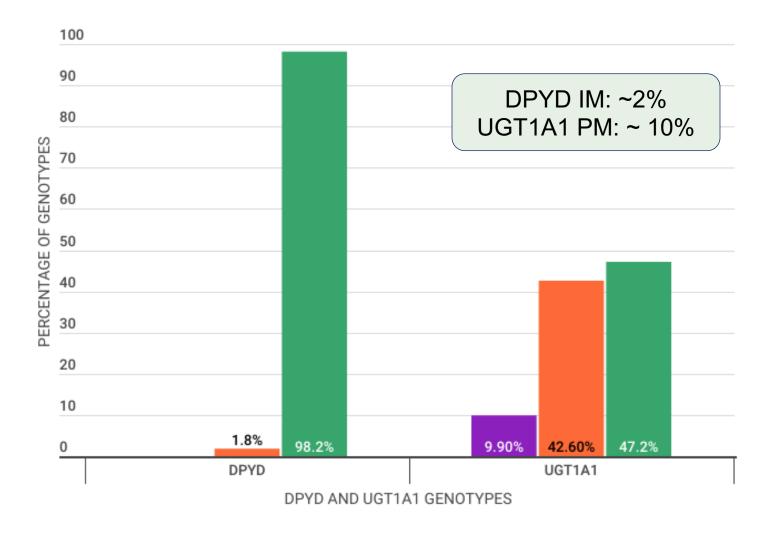
PMID: 36821823

OBJECTIVE

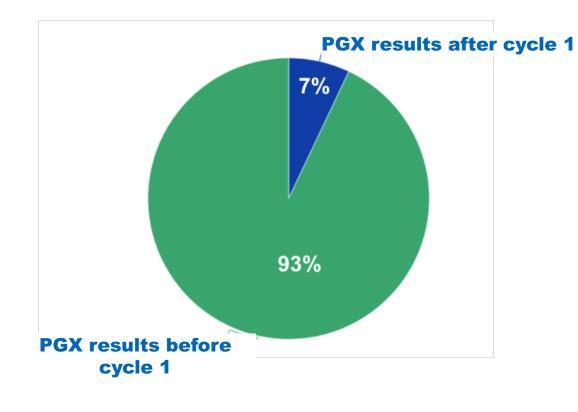
Demonstrate the feasibility of testing and utility within oncology

An Exploratory analysis of disease progression for patients with DPYD-guided dose reduction

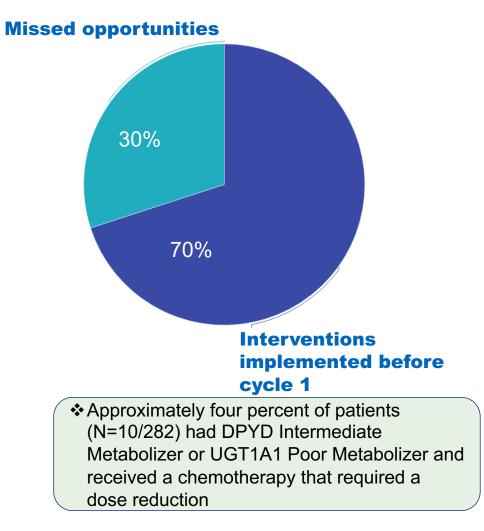
METHODS


Collected data on the <u>number and percentage:</u>

- Prevalence of actionable UGT1A1 (PM) and DPYD (IM, PM)
- Pharmacogenetic results returned, and interventions provided <u>before</u> the start of chemotherapy


Megan Muldoon

PREVALENCE OF ACTIONABLE DPYD AND UGT1A1 (N=282)

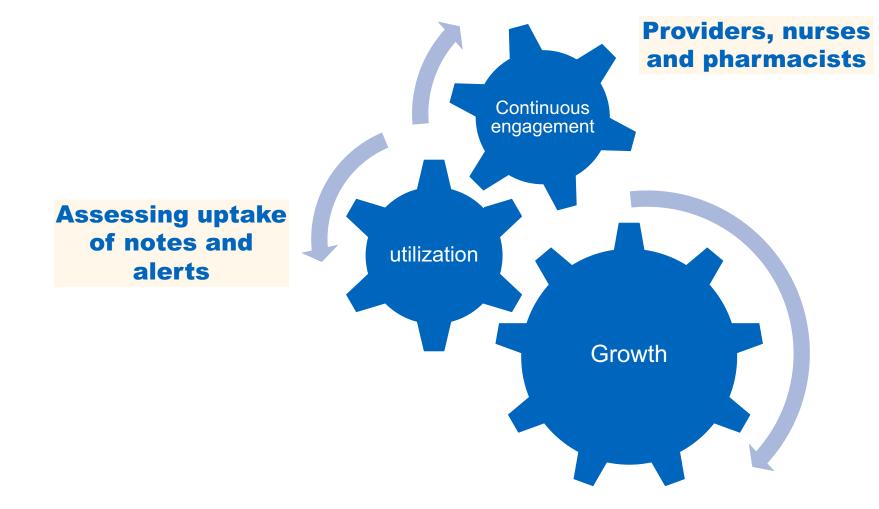


📄 PM 🛑 IM 🔵 NM

CHEMOTHERAPY PHARMACOGENETIC TESTING IS FEASIBLE

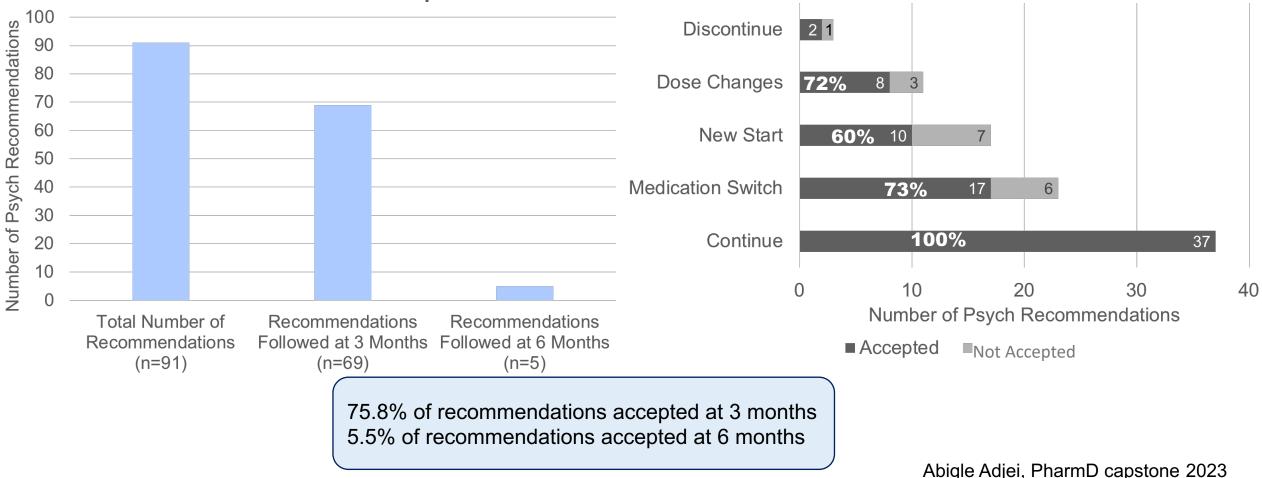
The Average and standard deviation of results turn-around time were 5.8 and 15.8 days, respectively

Pt	Age	Cancer staging	Fluoropyrimidine base	Recommendation implemented	Treatment completed	Follow up (days)	Progression
1	74	IIIB colon	Capecitabine (CapOx)	Yes	Yes	104	No
2	46	stage III, sigmoid	Capecitabine (CapOx)	Yes	Yes	326	No
3	62	Stage IIIB recto- sigmoid	5 FU (mFOLFOX)	Yes	Ongoing	Ongoing	Νο
4	65	Stage III, pancreas	5-FU (FOLFIRINOX) then capecitabine/radiation	Yes	Ongoing	Ongoing	No


Summary

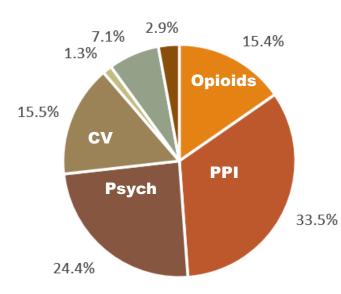
- Pharmacogenetic testing is feasible with majority of results returning before the start of treatment
- Interventions were accepted by providers with few missed opportunities for UGT1A1-guided interventions

Next steps


- Demonstrate that pharmacogenetic testing does not compromise effectiveness
- Education opportunities for UGT1A1-guided irinotecan and supportive care medications
- Demonstrate utility for other supportive care medications

Monitoring Progress and Addressing gaps

FOLLOWING UP ON INTERVENTIONS


Preliminary data on uptake of recommendations within notes

Provider Recommendation Uptake

ASSESSING BPA ALERTS

Percent of BPAs Triggered

- Many alerts are related to "monitoring"
- Alert fatigue
- Compromising the actionable ones

Treston warren

Opioids PPIs Psychological Cardiovascular Oncology NSAID Other

Class	PPIs	Opioids	Psychiatry	Cardiovascular	Oncology	NSAIDs	Other
No BPA (%)	881/2630 (33.5%)	404/2630 (15.4 %)	641/2630 (24.3%)	408/2630 (15.5%)	35/2630 (1.3%)	186/2630 (7.1%)	75/2630 (2.9%)
No patients	332	140	253	162	10	90	27

MONITORING GROWTH AND PROVIDER ENGAGEMENT

Completed clinical PGX tests

IDENTIFIED AREAS OF IMPROVEMENT

Provider education

- Triggered by:
- Increase in the volume
- Non acting on BPAs

Response

 System-wide educational seminars

Pharmacist education

- Triggered by:
 - Increase in the volume
 - Needs to sustain the program

Informatics

Triggered by:

- Increase in the volume
- Non acting on BPAs
- Streamline the workflow

Response

- Grand rounds seminars
- Continuing education

Response:

- Modifying alerts
- Investigating Epic genomics module

SUMMARY

- Explained the structure of the pharmacogenetic implementation program at St Elizabeth
- Demonstrated a high prevalence of pharmacogenetic medications and gene-drug interactions in Primary Care, justifying a multi-gene, panel-based approach
- Demonstrated that pharmacogenetic testing is feasible, with efforts spanning PCP and oncology
- Identified areas for sustained growth of our implementation including informatics support and education

ACKNOWLEDGEMENT

Precision Medicine Team

Brooke Philips, MD VIEW PROFILE

Josiah Allen, PharmD Pharmacist (859) 301-GENE (4363) josiah.allen@stelizabeth.com

Genetic Navigator

Jaime Grund, MS, LGC (859) 301-GENE (4363) jaime.grund@stelizabeth.com

Jody Wallace, MS, LGC

(859) 301-GENE (4363) jody.wallace@stelizabeth.com

Carrie Anderson, MS, LGC *Genetic Counselor*

(859) 301-GENE (4363) carrie.anderson@stelizabeth.con

(859) 301-GENE (4363) jacquelynn.berton@stelizabeth.co

Jordan Brady, MS, LGC Genetic Counselor

(859) 301-GENE (4363) abigail.brown@stelizabeth.co (859) 301-GENE (4363) jordan.brady@stelizabeth.com

Caroline Ewart, MS, LGC

(859) 301-GENE (4363) caroline.ewart@stelizabeth.com

(859) 301-GENE (4363) dawn.holladay@stelizabeth.com

Darbey Raible MS, LGC

(859) 301-GENE (4363) darbey.raible@stelizabeth.con

Kelly Tomins, MS, LGC Genetic Counselor

(859) 301-GENE (4363) kelly.tomins@stelizabeth.com

ACKNOWLEDGEMENT

Pharmacy team

- Andrea Schumann, PharmD
- Megan Muldoon, PharmD
- Kristina Hesse, PharmD

PharmD. Students

- Sheena Patel
- Treston Warren
- Abigle Adjei
- Alexis Craddock, Lauren Auteri

Physician Champions

- Brooke Phillips, MD
- Barry Wendt, MD

Nurse Champion

Robin Yoder

Mollie Beck, PharmD

Slides review and input Laura Ramsey, PhD

ACKNOWLEDGEMENT

THANK YOU

